×

Averages along the primes: improving and sparse bounds. (English) Zbl 1436.42013

Summary: Consider averages along the prime integers \(\mathbb{P}\) given by \[\mathcal{A}_{N}f(x) = N^{ - 1}\sum\limits_{p \in \mathbb{P}:\ p \le N} (\log p)f(x - p).\] These averages satisfy a uniform scale-free \(\ell^p \)-improving estimate. For all \(1 < p < 2\), there is a constant \(C_p\) so that for all integer \(N\) and functions \(f\) supported on \([0, N]\), there holds \[N^{ - 1/p^\prime}\| \mathcal{A}_N f \|_{\ell p^\prime} \leq {C_p}N^{ - 1/p} \| f \|_{\ell p}.\] The maximal function \(\mathcal{A}^\ast f = \operatorname{sup}_N | \mathcal{A}_{N} f |\) satisfies \((p, p)\) sparse bounds for all \(1 < p < 2\). The latter are the natural variants of the scale-free bounds. As a corollary, \( \mathcal{A}^\ast\) is bounded on \(\ell^p (w)\), for all weights \(w\) in the Muckenhoupt \(\mathcal{A}_p\) class. No prior weighted inequalities for \(\mathcal{A}^\ast\) were known.

MSC:

42A45 Multipliers in one variable harmonic analysis
42B25 Maximal functions, Littlewood-Paley theory
11L05 Gauss and Kloosterman sums; generalizations
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] J. Bourgain, On the maximal ergodic theorem for certain subsets of the integers, Israel J. Math. 61 (1988), no. 1, 39-72. MR937581 · Zbl 0642.28010
[2] J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I. Schrödinger equations, Geom. Funct. Anal. 3 (1993), no. 2, 107-156. MR1209299 · Zbl 0787.35097
[3] Jean Bourgain, Pointwise ergodic theorems for arithmetic sets, Inst. Hautes Études Sci. Publ. Math. 69 (1989), 5-45. With an appendix by the author, Harry Furstenberg, Yitzhak Katznelson and Donald S. Ornstein. MR1019960 · Zbl 0705.28008
[4] Amalia Culiuc, Robert Kesler, and Michael T. Lacey, Sparse bounds for the discrete cubic Hilbert transform, Anal. PDE 12 (2019), no. 5, 1259-1272. MR3892403 · Zbl 1446.42001
[5] Rui Han, Michael T Lacey, and Fan Yang, Averages along the Square Integers: ℓ^p improving and Sparse Inequalities, arXiv e-prints (2019Jul), arXiv:1907.05734, available at https://arxiv.org/abs/1907.05734. · Zbl 1469.11265
[6] K. Hughes, ℓ^p-improving for discrete spherical averages, ArXiv e-prints (April 2018), available at 1804.09260.
[7] Alexandru D. Ionescu, An endpoint estimate for the discrete spherical maximal function, Proc. Amer. Math. Soc. 132 (2004), no. 5, 1411-1417. MR2053347 · Zbl 1076.42014
[8] Alexandru D. Ionescu and Stephen Wainger, L^p boundedness of discrete singular Radon transforms, J. Amer. Math. Soc. 19 (2006), no. 2, 357-383. MR2188130 · Zbl 1158.42007
[9] R. Kesler, ℓ^p(ℤ^d)-Improving Properties and Sparse Bounds for Discrete Spherical Maximal Averages, ArXiv e-prints (May 2018), available at https://arxiv.org/abs/1805.09925.
[10] R. Kesler, ℓ^p(ℤ^d)-Improving Properties and Sparse Bounds for Discrete Spherical Maximal Means, Revisited, ArXiv e-prints (September 2018), available at https://arxiv.org/abs/1809.06468.
[11] Robert Kesler, Michael T. Lacey, and Darío Mena, Sparse bounds for the discrete spherical maximal functions, Pure Appl. Anal. 2 (2020), no. 1, 75-92, DOI 10.2140/paa.2020.2.75. MR4041278 · Zbl 1460.42027
[12] Robert Kesler, Michael T. Lacey, and Darío Mena Arias, Lacunary discrete spherical maximal functions, New York J. Math. 25 (2019), 541-557. MR3982252 · Zbl 1425.42022
[13] Ben Krause, Discrete Analogoues in Harmonic Analysis: Maximally Monomially Modulated Singular Integrals Related to Carleson’s Theorem, arXiv e-prints (2018Mar), arXiv:1803.09431, available at 1803.09431.
[14] Michael T. Lacey and Robert Kesler, ℓ^p-improving inequalities for Discrete Spherical Averages, arXiv e-prints (April 2018), arXiv:1804.09845, available at 1804.09845. · Zbl 1398.42008
[15] Mariusz Mirek, Elias M. Stein, and Bartosz Trojan, ℓ^p(ℤ^d)-estimates for discrete operators of Radon type: maximal functions and vector-valued estimates, J. Funct. Anal. 277 (2019), no. 8, 2471-2521, DOI 10.1016/j.jfa.2018.10.020. MR3990725 · Zbl 1444.42026
[16] Mariusz Mirek, Elias M. Stein, and Bartosz Trojan, ℓ^p(ℤ^d)-estimates for discrete operators of Radon type: variational estimates, Invent. Math. 209 (2017), no. 3, 665-748. MR3681393 · Zbl 1397.42006
[17] Mariusz Mirek and Bartosz Trojan, Cotlar’s ergodic theorem along the prime numbers, J. Fourier Anal. Appl. 21 (2015), no. 4, 822-848. MR3370012 · Zbl 1336.37010
[18] Bartosz Trojan, Endpoint estimates for the maximal function over prime numbers, arXiv e-prints (2019Jul), arXiv:1907.04753, available at 1907.04753. · Zbl 1427.37007
[19] R. C. Vaughan, The Hardy-Littlewood method, Cambridge Tracts in Mathematics, vol. 80, Cambridge University Press, Cambridge-New York, 1981. MR628618 · Zbl 0455.10034
[20] Máté Wierdl, Pointwise ergodic theorem along the prime numbers, Israel J. Math. 64 (1988), no. 3, 315-336 (1989). MR995574 · Zbl 0695.28007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.