×

Complete non-orientable minimal surfaces in \(\mathbb{R}^{3}\) and asymptotic behavior. (English) Zbl 1304.49082

Summary: In this paper, we give new existence results for complete non-orientable minimal surfaces in \(\mathbb{R}^{3}\) with prescribed topology and asymptotic behavior.

MSC:

49Q05 Minimal surfaces and optimization
53A10 Minimal surfaces in differential geometry, surfaces with prescribed mean curvature
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] A. Alarcón, Compact complete minimal immersions in R3, Trans. Amer. Math. Soc., 362 (2010), pp. 4063-4076.; · Zbl 1196.53006
[2] A. Alarcón, Compact complete proper minimal immersions in strictly convex bounded regular domains of R3, AIP Conference Proceedings, 1260 (2010), pp. 105-111.; · Zbl 1330.53013
[3] A. Alarcón and F. J. López, Approximation theory for non-orientable minimal surfaces and applications. Preprint 2013, arXiv:1307.2399 (to appear in Geom. Topol.).;
[4] A. Alarcón and F. J. López, Properness of associated minimal surfaces. Trans. Amer. Math. Soc., in press.; · Zbl 1298.53011
[5] A. Alarcón and F. J. López, Minimal surfaces in R3 properly projecting into R2, J. Di_erential Geom., 90 (2012), pp. 351-381.; · Zbl 1252.53005
[6] A. Alarcón and F. J. López, Compact complete null curves in Complex 3-space, Israel J. Math., 195 (2013), pp. 97-122.; · Zbl 1288.53050
[7] A. Alarcón and F. J. López, Null curves in C3 and Calabi-Yau conjectures, Math. Ann., 355 (2013), pp. 429-455.; · Zbl 1269.53061
[8] A. Alarcón and N. Nadirashvili, Limit sets for complete minimal immersions, Math. Z., 258 (2008), pp. 107-113.; · Zbl 1167.53007
[9] L. Ferrer, F. Martín, and W. H. Meeks, III, Existence of proper minimal surfaces of arbitrary topological type, Adv. Math., 231 (2012), pp. 378-413.; · Zbl 1246.53006
[10] F. Martín and N. Nadirashvili, A Jordan curve spanned by a complete minimal surface, Arch. Ration. Mech. Anal., 184 (2007), pp. 285-301.; · Zbl 1114.49039
[11] W. H. Meeks, III, The classi_cation of complete minimal surfaces in R3 with total curvature greater than −8_, Duke Math. J., 48 (1981), pp. 523-535.; · Zbl 0472.53010
[12] W. H. Meeks, III and S. T. Yau, The classical Plateau problemand the topology of three-dimensionalmanifolds. The embedding of the solution given by Douglas-Morrey and an analytic proof of Dehn’s lemma, Topology, 21 (1982), pp. 409-442.; · Zbl 0489.57002
[13] H. Minkowski, Volumen und Oberfläche, Math. Ann., 57 (1903), pp. 447-495.; · JFM 34.0649.01
[14] N. Nadirashvili, Hadamard’s and Calabi-Yau’s conjectures on negatively curved and minimal surfaces, Invent. Math., 126 (1996), pp. 457-465.; · Zbl 0881.53053
[15] R. Schoen and S. T. Yau, Lectures on harmonic maps, Conference Proceedings and Lecture Notes in Geometry and Topology, II, International Press, Cambridge, MA, 1997.; · Zbl 0886.53004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.