×

Pore-scale modeling and simulation of flow, transport, and adsorptive or osmotic effects in membranes: the influence of membrane microstructure. (English) Zbl 1342.76143

Summary: The selection of an appropriate membrane for a particular application is a complex and expensive process. Computational modeling can significantly aid membrane researchers and manufacturers in this process. The membrane morphology is highly influential on its efficiency within several applications, but is often overlooked in simulation. Two such applications which are very important in the provision of clean water are forward osmosis and filtration using functionalized micro/ultra/nano-filtration membranes. Herein, we investigate the effect of the membrane morphology in these two applications. First we present results of the separation process using resolved finger- and sponge-like support layers. Second, we represent the functionalization of a typical microfiltration membrane using absorptive pore walls, and illustrate the effect of different microstructures on the reactive process. Such numerical modeling will aid manufacturers in optimizing operating conditions and designing efficient membranes.

MSC:

76Z05 Physiological flows
76S05 Flows in porous media; filtration; seepage
92C37 Cell biology
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Cath, T., Childress, A., Elimelech, M.: Forward osmosis: principles, applications, and recent developments. J. Membr. Sci. 281(1-2), 70-87 (2006) · doi:10.1016/j.memsci.2006.05.048
[2] Gruber, M., Johnson, C., Tang, C., Jensen, M., Yde, L., Hélix-Nielsen, C.: Validation and analysis of forward osmosis CFD model in complex 3D geometries. J. Membr. 2, 764-782 (2012) · doi:10.3390/membranes2040764
[3] Sagiv, A., Zhu, A., Christofides, P., Cohen, Y., Semiat, R.: Analysis of forward osmosis desalination via two-dimensional fem model. J. Membr. Sci. 464, 161-172 (2014) · doi:10.1016/j.memsci.2014.04.001
[4] Bhattacharjee, S., Ryan, J.N., Elimelech, M.: Virus transport in physically and geochemically heterogeneous subsurface porous media. J. Contam. Hydrol. 57(3-4), 161-187 (2002). doi:10.1016/s0169-7722(02)00007-4 · doi:10.1016/s0169-7722(02)00007-4
[5] Kuhnen, F., Barmettler, K., Bhattacharjee, S., Elimelech, M., Kretzschmar, R.: Transport of iron oxide colloids in packed quartz sand media: monolayer and multilayer deposition. J. Colloid Interface Sci. 231(1), 32-41 (2000). doi:10.1006/jcis.2000.7097 · doi:10.1006/jcis.2000.7097
[6] Sim, Y., Chrysikopoulos, C.V.: Virus transport in unsaturated porous media. Water Resour. Res. 36(1), 173-179 (2000). doi:10.1029/1999wr900302 · doi:10.1029/1999wr900302
[7] Raoof, A., Hassanizadeh, S.M., Leijnse, A.: Upscaling transport of adsorbing solutes in porous media: pore-network modeling. Vadose Zone J. 9, 624-636 (2010). doi:10.2136/vzj2010.0026 · doi:10.2136/vzj2010.0026
[8] Varloteaux, C., Vu, M.T., Békri, S., Adler, P.M.: Reactive transport in porous media: pore-network model approach compared to pore-scale model. Phys. Rev. E 87(2), 023010 (2013). doi:10.1103/PhysRevE.87.023010 · doi:10.1103/PhysRevE.87.023010
[9] Iliev, O., Lakdawala, Z., Leonard, K.H.L., Vutov, Y.: On pore-scale modeling and simulation of reactive transport in 3D geometries. Submitted to Advances in Water Resources (2015). http://arxiv.org/abs/1507.01894
[10] Sablani, S., Goosen, M., Al-Belushi, R., Wilf, M.: Concentration polarization in ultrafiltration and reverse osmosis: a critical review. Desalination 141(3), 269-289 (2001) · doi:10.1016/S0011-9164(01)85005-0
[11] der Bruggen, B.V.: Removal of pollutants from surface water and groundwater by nanofiltration: overview of possible applications in the drinking water industry. Environ. Pollut. 122(3), 435-445 (2003) · doi:10.1016/S0269-7491(02)00308-1
[12] Liu, F., Hashim, N.A., Liu, Y., Abed, M.R.M., Li, K.: Progress in the production and modification of PVDF membranes. J. Membr. Sci. 375(1—-2), 1-27 (2011) · doi:10.1016/j.memsci.2011.03.014
[13] Shi, M., Printsypar, G., Iliev, O., Calo, V., Amy, G., Nunes, S.: Water flow prediction based on 3-d membrane morphology simulation. J. Membr. Sci. 487, 19-31 (2015) · doi:10.1016/j.memsci.2015.03.036
[14] McCutcheon, J., Elimelech, M.: Influence of concentrative and dilutive internal concentration polarization on flux behavior in forward osmosis. J. Membr. Sci. 284, 237-247 (2006) · doi:10.1016/j.memsci.2006.07.049
[15] Hunter, P.R., MacDonald, A.M., Carter, R.C.: Water supply and health. PLoS Med 7(11), e1000,361+ (2010) · doi:10.1371/journal.pmed.1000361
[16] Pendergast, M.M., Hoek, M.V.: A review of water treatment membrane nanotechnologies. Energy Environ. Sci. 4(6), 1946-1971 (2011) · doi:10.1039/c0ee00541j
[17] Bruggen, B.V.D., Vandecasteele, C., Gestel, T.V., Doyen, W., Leysen, R.: A review of pressure-driven membrane processes in wastewater treatment and drinking water production. Environ. Prog. 22(1), 46-56 (2003). doi:10.1002/ep.670220116 · doi:10.1002/ep.670220116
[18] Lakdawala, Z.: On efficient algorithms for filtration related multiscale problems. Ph.D. Thesis, University of Kaiserslautern (2010)
[19] The virtual material laboratory geodict. urlhttp://www.geodict.com (2014)
[20] Mosthaf, K., Baber, K., Flemisch, B., Helmig, R., Leijnse, A., Rybak, I., Wohlmuth, B.: A coupling concept for two-phase compositional porous-medium and single-phase compositional free flow. Water Resour. Res. 47, 1-19 (2011) · doi:10.1029/2010WR009138
[21] Ciegis, R., Iliev, O., Lakdawala, Z.: On parallel numerical algorithms for simulating industrial filtration problems. Berichte des Fraunhofer ITWM 114 7(2), 118-134 (2007) · Zbl 1248.76108
[22] Laptev, V.: Numerical solution of coupled flow in plain and porous media. Ph.D. Thesis, Technical University Kaiserslautern (2004)
[23] Kralchevsky, PA; Danov, KD; Denkov, ND; Birdi, KS (ed.), Chemical physics of colloid systems and interfaces (2008), Boca Raton
[24] Kang, H.C., Weinberg, W.H.: Modeling the kinetics of heterogeneous catalysis. Chem. Rev. 95(3), 667-676 (1995). doi:10.1021/cr00035a010 · doi:10.1021/cr00035a010
[25] Baret, J.F.: Theoretical model for an interface allowing a kinetic study of adsorption. J Colloid Interface Sci. 30(1), 1-12 (1969). doi:10.1016/0021-9797(69)90373-7 · doi:10.1016/0021-9797(69)90373-7
[26] Allaire, G., Brizzi, R., Mikelić, A., Piatnitski, A.: Two-scale expansion with drift approach to the Taylor dispersion for reactive transport through porous media. Chem. Eng. Sci. 65(7), 2292-2300 (2010). doi:10.1016/j.ces.2009.09.010 · Zbl 1192.68510 · doi:10.1016/j.ces.2009.09.010
[27] Allaire, G., Hutridurga, H.: Homogenization of reactive flows in porous media and competition between bulk and surface diffusion. IMA J. Appl. Math. 77(6), 788-815 (2012). doi:10.1093/imamat/hxs049 · Zbl 1341.76017 · doi:10.1093/imamat/hxs049
[28] Allaire, G., Mikelić, A., Piatnitski, A.: Homogenization approach to the dispersion theory for reactive transport through porous media. Soc. Ind. Appl. Math. J. Math. Anal. 42(1), 125-144 (2010). doi:10.1137/090754935 · Zbl 1213.35057 · doi:10.1137/090754935
[29] Di Nicolò, E., Iliev, O., Leonard, K.: Virtual generation of microfiltration membrane geometry for the numerical simulation of contaminent transport. Technical Report 245, Fraunhofer-Institut für Techno-und Wirtschaftsmathematik ITWM (2015)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.