×

Online stochastic convergence analysis of the Kalman filter. (English) Zbl 1417.93330

Summary: This paper presents modifications to the stochastic stability lemma which is then used to estimate the convergence rate and persistent error of the linear Kalman filter online without using knowledge of the true state. Unlike previous uses of the stochastic stability lemma for stability proof, this new convergence analysis technique considers time-varying parameters, which can be calculated online in real-time to monitor the performance of the filter. Through simulation of an example problem, the new method was shown to be effective in determining a bound on the estimation error that closely follows the actual estimation error. Different cases of assumed process and measurement noise covariance matrices were considered in order to study their effects on the convergence and persistent error of the Kalman filter.

MSC:

93E15 Stochastic stability in control theory
60G35 Signal detection and filtering (aspects of stochastic processes)
93E11 Filtering in stochastic control theory
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] R. E. Kalman, “A new approach to linear filtering and prediction problems,” Journal of Basic Engineering, vol. 82, pp. 35-45, 1960.
[2] H. Liu, S. Shah, and W. Jiang, “On-line outlier detection and data cleaning,” Computers and Chemical Engineering, vol. 28, no. 9, pp. 1635-1647, 2004. · doi:10.1016/j.compchemeng.2004.01.009
[3] S. Lu, H. Lu, and W. J. Kolarik, “Multivariate performance reliability prediction in real-time,” Reliability Engineering and System Safety, vol. 72, no. 1, pp. 39-45, 2001. · doi:10.1016/S0951-8320(00)00102-2
[4] D.-J. Jwo and T.-S. Cho, “A practical note on evaluating Kalman filter performance optimality and degradation,” Applied Mathematics and Computation, vol. 193, no. 2, pp. 482-505, 2007. · Zbl 1193.93174 · doi:10.1016/j.amc.2007.04.008
[5] J. G. Saw, M. C. K. Yang, and T. C. Mo, “Chebyshev inequality with estimated mean and variance,” The American Statistician, vol. 38, no. 2, pp. 130-132, 1984.
[6] J. L. Maryak, J. C. Spall, and B. D. Heydon, “Use of the Kalman filter for inference in state-space models with unknown noise distributions,” IEEE Transactions on Automatic Control, vol. 49, no. 1, pp. 87-90, 2004. · Zbl 1365.93509 · doi:10.1109/TAC.2003.821415
[7] J. C. Spall, “The kantorovich inequality for error analysis of the Kalman filter with unknown noise distributions,” Automatica, vol. 31, no. 10, pp. 1513-1517, 1995. · Zbl 0836.93058 · doi:10.1016/0005-1098(95)00069-9
[8] R. E. Kalman, “New methods in Wiener filtering theory,” in Proceedings of the 1st Symposium on Engineering Applications of Random Function Theory and Probability, J. L. Bogdanoff and F. Kozin, Eds., Wiley, New York, NY, USA, 1963. · Zbl 0218.93019
[9] R. J. Fitzgerald, “Divergence of the Kalman filter,” IEEE Transactions on Automatic Control, vol. 16, no. 6, pp. 736-747, 1971.
[10] H. W. Sorenson, “On the error behavior in linear minimum variance estimation problems,” IEEE Transactions on Automatic Control, vol. 12, no. 5, pp. 557-562, 1967. · doi:10.1109/TAC.1967.1098679
[11] J. J. Deyst Jr. and C. F. Price, “Conditions for asymptotic stability of the discrete minimum-variance linear estimator,” IEEE Transactions on Automatic Control, vol. 13, no. 6, pp. 702-705, 1968. · doi:10.1109/TAC.1968.1099024
[12] A. H. Jazwinski, Stochastic Processes and Filtering Theory, Academic Press, New York, NY, USA, 1970. · Zbl 0203.50101
[13] K. L. Hitz, T. E. Fortmann, and B. D. O. Anderson, “A note on bounds on solutions of the Riccati equation,” IEEE Transactions on Automatic Control, vol. 17, no. 1, p. 178, 1972. · doi:10.1109/TAC.1972.1099902
[14] E. Tse, “Observer-estimators for discrete-time systems,” IEEE Transactions on Automatic Control, vol. 18, no. 1, pp. 10-16, 1973. · Zbl 0279.93039
[15] J. J. Deyst Jr., “Correction to “Conditions for asymptotic stability of the discrete minimum-variance linear estimator”,” IEEE Transactions on Automatic Control, vol. 18, no. 5, pp. 562-563, 1973. · doi:10.1109/TAC.1973.1100397
[16] J. B. Moore and B. D. O. Anderson, “Coping with singular transition matrices in estimation and control stability theory,” International Journal of Control, vol. 31, no. 3, pp. 571-586, 1980. · Zbl 0448.93049 · doi:10.1080/00207178008961063
[17] S. W. Chan, G. C. Goodwin, and K. S. Sin, “Convergence properties of the Riccati difference equation in optimal filtering of nonstabilizable systems,” IEEE Transactions on Automatic Control, vol. 29, no. 2, pp. 110-118, 1984. · Zbl 0536.93057 · doi:10.1109/TAC.1984.1103465
[18] L. Guo, “Estimating time-varying parameters by the Kalman filter based algorithm: stability and convergence,” IEEE Transactions on Automatic Control, vol. 35, no. 2, pp. 141-147, 1990. · Zbl 0704.93067 · doi:10.1109/9.45169
[19] J. L. Crassidis and J. L. Junkins, Optimal Estimation of Dynamic Systems, chapter 5, CRC Press, Boca Raton, Fla, USA, 2004. · Zbl 1072.93001
[20] E. F. Costa and A. Astolfi, “On the stability of the recursive Kalman filter for linear time-invariant systems,” in Proceedings of the American Control Conference (ACC ’08), pp. 1286-1291, Seattle, Wash, USA, June 2008. · doi:10.1109/ACC.2008.4586670
[21] R. G. Agniel and E. I. Jury, “Almost sure boundedness of randomly sampled systems,” SIAM Journal on Control, vol. 9, no. 3, pp. 372-384, 1971. · Zbl 0216.55701 · doi:10.1137/0309027
[22] T.-J. Tarn and Y. Rasis, “Observers for nonlinear stochastic systems,” IEEE Transactions on Automatic Control, vol. 21, no. 4, pp. 441-448, 1976. · Zbl 0332.93075 · doi:10.1109/TAC.1976.1101300
[23] K. Reif, S. Günther, E. Yaz, and R. Unbehauen, “Stochastic stability of the discrete-time extended Kalman filter,” IEEE Transactions on Automatic Control, vol. 44, no. 4, pp. 714-728, 1999. · Zbl 0967.93090 · doi:10.1109/9.754809
[24] K. Xiong, H. Y. Zhang, and C. W. Chan, “Performance evaluation of UKF-based nonlinear filtering,” Automatica, vol. 42, no. 2, pp. 261-270, 2006. · Zbl 1103.93045 · doi:10.1016/j.automatica.2005.10.004
[25] Y. Wu, D. Hu, and X. Hu, “Comments on “Performance evaluation of UKF-based nonlinear filtering”,” Automatica, vol. 43, no. 3, pp. 567-568, 2007. · Zbl 1137.93417 · doi:10.1016/j.automatica.2006.08.029
[26] M. Rhudy, Y. Gu, and M. R. Napolitano, “Relaxation of initial error and noise bounds for stability of GPS/INS attitude estimation,” in AIAA Guidance, Navigation, and Control Conference, Minneapolis, Minn, USA, August 2012.
[27] D. Simon, Optimal State Estimation, Wiley, New York, NY, USA, 2006.
[28] J. C. Spall, “The distribution of nonstationary autoregressive processes under general noise conditions,” Journal of Time Series Analysis, vol. 14, no. 3, pp. 317-320, 1993, (correction: vol. 14, p. 550, 1993). · Zbl 0769.62071 · doi:10.1111/j.1467-9892.1993.tb00148.x
[29] J. L. Maryak, J. C. Spall, and G. L. Silberman, “Uncertainties for recursive estimators in nonlinear state-space models, with applications to epidemiology,” Automatica, vol. 31, no. 12, pp. 1889-1892, 1995. · Zbl 0853.93095 · doi:10.1016/0005-1098(95)00109-9
[30] R. V. Hogg, J. W. McKean, and A. T. Craig, Introduction to Mathematical Statistics, Pearson Education, 2005.
[31] E. Kreyszig, Advanced Engineering Mathematics, Wiley, New York, NY, USA, 9th edition, 2006.
[32] F. L. Lewis, Optimal Estimation, Wiley, New York, NY, USA, 1986. · Zbl 0665.93065
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.