×

Vanishing integral relations and expectation values for Bloch functions in finite domains. (English) Zbl 1189.32002

Summary: Integral identities for particular Bloch functions in finite periodic systems are derived. All following statements are proven for a finite domain consisting of an integer number of unit cells. It is shown that matrix elements of particular Bloch functions with respect to periodic differential operators vanish identically. The real valuedness, the time-independence and a summation property of the expectation values of periodic differential operators applied to superpositions of specific Bloch functions are derived.

MSC:

32A18 Bloch functions, normal functions of several complex variables
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] F. Bloch, ZS. f. Phys. 52, 555 (1929) · doi:10.1007/BF01339455
[2] C. Kittel, Quantum Theory of Solids (John Wiley & Sons, Inc., New York, 1987)
[3] Strictly speaking, at the band edge energies (i.e. when q,{\(\pi\)}/d) the general solution [18] is either {\(\Psi\)}B n,(q)(x)=exp (iqx)[{\(\alpha\)}1 u(1) n,q(x)+{\(\alpha\)}2 (xu(1) n,q(x)+u(2) n,q(x))] or {\(\Psi\)}B n,(q)(x)=exp (iqx)[{\(\alpha\)}1 u(1) n,q(x)+{\(\alpha\)}2 u(2) n,q(x)], depending on the symmetry of the unit cell. Here u(1) n,q(x) and u(2) n,q(x) are two different periodic functions belonging either both to q=0 or both to q={\(\pi\)}/d
[4] D.W.L. Sprung, H. Wu, J. Martorell, Am. J. Phys. 61, 1118 (1993) · doi:10.1119/1.17306
[5] D.W.L. Sprung, J.D. Sigetich, H. Wu, J. Martorell, Am. J. Phys. 68, 715 (2000) · doi:10.1119/1.19533
[6] S.Y. Ren, Phys. Rev. B 64, 035322 (2001) · doi:10.1103/PhysRevB.64.035322
[7] P. Pereyra, E. Castillo, Phys. Rev. B 65, 205120 (2002) · doi:10.1103/PhysRevB.65.205120
[8] S.Y. Ren, Ann. Physics 301, 22 (2002) · Zbl 1010.81520 · doi:10.1006/aphy.2002.6298
[9] C. Pacher, E. Gornik, Phys. Rev. B 68, 155319 (2003) · doi:10.1103/PhysRevB.68.155319
[10] C. Pacher, W. Boxleitner, E. Gornik, Phys. Rev. B 71, 125317 (2005) · doi:10.1103/PhysRevB.71.125317
[11] P. Pereyra, Ann. Physics 320, 1 (2005) · Zbl 1078.81525 · doi:10.1016/j.aop.2005.05.010
[12] The so-called surface states that arise in systems with CQC lie in general energetically outside the band and are characterized by an imaginary Bloch wave number. The history of the study of surface states together with new insights have been reported recently in [11]
[13] C. Pacher, C. Rauch, G. Strasser, E. Gornik, F. Elsholz, A. Wacker, G. Kießlich, E. Schöll, Appl. Phys. Lett. 79, 1486 (2001) · doi:10.1063/1.1399315
[14] M. Reed, B. Simon, Analysis of Operators (Methods of Modern Mathematical Physics), Vol. IV (Academic Press, San Diego, 1978) · Zbl 0401.47001
[15] L.D. Landau, E.M. Lifshitz, Course of Theoretical Physics: Quantum Mechanics (Non-Relativistic Theory), Vol. III 3rd edn. (Pergamon Press, Oxford, 1977)
[16] G.L. Bir, G.E. Pikus, Symmetry and strain-induced effects in semiconductors (John Wiley & Sons, Inc., New York, 1974)
[17] L. Jansen, M. Boon, Theory of Finite Groups (North Holland, Amsterdam, 1967) · Zbl 0218.20002
[18] M.S.P. Eastham, The Spectral Theory of Periodic Differential Equations (Scottish Academic Press Ltd., Edinburgh, 1973) · Zbl 0287.34016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.