×

Computational modelling of diarthrodial joints. Physiological, pathological and pos-surgery simulations. (English) Zbl 1140.74516

Summary: This paper provides a critical review of past and current techniques for the computational modelling of diarthrodial joints. The objective of the paper is to describe strategies for addressing the computational modelling of joint mechanics using the finite element (FE) method, differentiating between geometry, constitutive modelling of the components, computational aspects and applications. The structure and function of the main components of the joints are reviewed, with emphasis on the relationship of tissue microstructure with its continuum mechanical behavior. Applications to two diarthrodial joints (human knee and temporomandibular joint) in physiological, pathological andpos-surgery situations are presented and discussed. The paper concludes with a discussion of future research directions.

MSC:

74L15 Biomechanical solid mechanics
74S05 Finite element methods applied to problems in solid mechanics
92C10 Biomechanics
74-02 Research exposition (monographs, survey articles) pertaining to mechanics of deformable solids
92-02 Research exposition (monographs, survey articles) pertaining to biology

Software:

ABAQUS
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Abdel-Rahman E, Hefzy MS (1993) A two-dimensional dynamic anatomical model of the human knee joint. ASME J Biomech Eng 115:357–365 · doi:10.1115/1.2895498
[2] Akizuki S, Mow VC, Müller F, Pita JC, Howell DS, Manicourt DH (1986) Tensile properties of human knee joint cartilage:I. Influence of ionic conditions, weight bearing and fibrillation on the tensile modelus. J Orthopaed Res 4:379–392 · doi:10.1002/jor.1100040401
[3] Alastrue V, Calvo B, Peña E, Doblaré M (2006) Biomechanical modelling of refractive corneal surgery. ASME J Biomech Eng 128:150–160 · doi:10.1115/1.2132368
[4] Almeida ES, Spilker RL (1997) Mixed and penalty finite element models for the nonlinear behaviour of biphasic soft tissues in finite deformation: Part I alternate formulations. Comput Methods Appl Mech Eng 1:25–46
[5] Almeida ES, Spilker RL (1997) Mixed and penalty finite element models for the nonlinear behaviour of biphasic soft tissues in finite deformation: Part II nonlinear examples. Comput Methods Appl Mech Eng 1:151–170
[6] Almeida ES, Spilker RL (1998) Finite element formulations for hyperelastic transversely isotropic biphasic soft tissues. Comput Methods Appl Mech Eng 151:513–538 · Zbl 0920.73350 · doi:10.1016/S0045-7825(97)82246-3
[7] Anderson DM, Sinclair PM, McBride KM (1991) A clinical evaluation of temporomandibular joint disk plication surgery. Am J Orthod Dentofac Orthop 100
[8] Annandale T (1887) On displacement of intraarticular cartilage of the lower jaw and its treatment by operation. Lancet 1:411–412 · doi:10.1016/S0140-6736(02)28282-3
[9] Arms S, Boyle J, Johnson R, Pope M (1995) Strain in the medial collateral ligament of the human knee: an autopsy study. J Biomech 29:199–206
[10] Armstrong CG, Lai WM, Mow VC (1984) An analisysis of the unconfined compression of articular cartilage. ASME J Biomech Eng 106:165–173 · doi:10.1115/1.3138475
[11] Au AG, Raso VJ, Liggins AB, Otto DD, Amirfazli A (2005) A three-dimensional finite element stress analysis for the tunnel placement and buttons in anterior cruciate ligament reconstructions. J Biomech 38:827–832 · doi:10.1016/j.jbiomech.2004.05.007
[12] Bach JM, Hull ML (1998) Strain inhomogeneity in the anterior cruciate ligament under application of external and muscular loads. ASME J Biomech Eng 120:497–503 · doi:10.1115/1.2798020
[13] Barbenel JC, Evans JH, Finlay JB (1973) Stress-strain-time relations for soft connective tissues. In: Kenedi (ed) Perspectives biomed eng. McMillan, New York, pp 165–172
[14] Beek M, Koolstra JH, van Ruijven LJ, van Eijden TMGJ (2000) Three-dimensional finite element analysis of the human temporomandibular joint disc. J Biomech 33:307–316 · doi:10.1016/S0021-9290(99)00168-2
[15] Beek M, Koolstra JH, van Eijden TMGJ (2003) Human temporomandibular joint disc cartilage as a poroelastic material. Clin Biomech 18:69–76 · doi:10.1016/S0268-0033(02)00135-3
[16] Beek M, Koolstra JH, van Ruijven LJ, van Eijden TMGJ (2001) Three-dimensional finite element analysis of the cartilaginous structures in the human temporomandibular joint. J Dent Res 80:1913–1918 · doi:10.1177/00220345010800101001
[17] Bendjaballah MZ, Shirazi-adl A, Zukor DJ (1995) Biomechanics of the human knee joint in compression: reconstruction, mesh generation and finite element analysis. Knee 2:69–79 · doi:10.1016/0968-0160(95)00018-K
[18] Bendjaballah MZ, Shirazi-adl A, Zukor DJ (1998) Biomechanical response of the passive human knee joint under anterior-posterior forces. Clin Biomech 13:625–633 · doi:10.1016/S0268-0033(98)00035-7
[19] Berkovitz BKB (2000) Collagen crimping in the intra-articular disc and articular surfaces of the human temporomandibular joint. Arch Oral Biol 45:749–756 · doi:10.1016/S0003-9969(00)00045-5
[20] Beynnon B, Yu J, Huston D, Fleming B, Johnson R, Haugh L, Pope M (1996) A sagittal plane model of the knee and cruciate ligaments with application of a sensitivity analysis. ASME J Biomech Eng 118:227–239 · doi:10.1115/1.2795965
[21] Papadrakakis M, Topping BHV (eds) (1994) Advances in non-linear finite element methods. Civil-Comp Ltd
[22] Blankevoort L, Huiskes R (1991) Ligament-bone interaction in a three-dimensional model of the knee. ASME J Biomech Eng 113:263–269 · doi:10.1115/1.2894883
[23] Buschmann MD, Grodzinsky AJ (1995) A molecular model of proteoglycan-associated electrostatic forces in cartilage mechanics. ASME J Biomech Eng 117:179–192 · doi:10.1115/1.2796000
[24] Butler DL, Sheh MY, Stouffer DC, Samaranayake VA, Levy MS (1990) Surface strain variation in human patellar tendon and knee cruciate ligaments. ASME J Biomech Eng 39:38–45 · doi:10.1115/1.2891124
[25] Carter DR, Hayes WC (1977) The compressive behavior of bone as a two-phase porous structure. J Bone Joint Surg 59:954–962
[26] Carter DR, Wong M (1988) The role of mechanical loading histories in the development od diarthrodial joints. J Orthopaed Res 6:804–816 · doi:10.1002/jor.1100060604
[27] Chan SC, Seedhom BB (1995) The effect of the geometry of the tibia on prediction of the cruciate ligament forces: a theoretical analysis. J Eng Med 209:17–30 · doi:10.1243/PIME_PROC_1995_209_313_02
[28] Chaudhry HR, Bukiet, B, Davis A, Ritter AB, Findley T (1997) Residual stress in oscillating thoracic arteries reduce circumferential stresses and stress gradient. J Biomech 30:57–62 · doi:10.1016/S0021-9290(97)81292-4
[29] Chen J, Buckwalter K (1993) Displacement analysis of the temporomandibular condyle from magnetic resonance images. J Biomech 26:1455–1462 · doi:10.1016/0021-9290(93)90096-W
[30] Chen J, Xu L (1994) A finite element analysis of the human temporomandibular joint. ASME J Biomech Eng 116:401–407 · doi:10.1115/1.2895790
[31] Chen Y, Chen X, Hisada T (2006) Non-linear finite element analysis of mechanical electrochemical phenomena in hydrated soft tissues based on triphasic theory. Int J Numer Methods Eng 65:147–173 · Zbl 1179.74138 · doi:10.1002/nme.1439
[32] Cohen B, Gardner TR, Ateshian GA (1993) The influence of transverse isotropy on cartilage indentation behaviour: a study of the human humeral head. Trans Orthopaed Res Soc 39:185
[33] Cohen B, Lai WM, Chorney GS, Dick HM, Mow VV (1992) Unconfined compression of transversely isotropic biphasic tissues. Trans ASME 22:207–219
[34] Coletti JM, Akeson WH, Woo SLY (1972) A comparison of the physical behavior of normal articular cartilage and the arthroplasty surface. J Bone Joint Surg 54A:147–160
[35] Cooper B, Oberdorfer M, Rumpf D, Malakhova O, Rudman R, Mariotti A (1999) Trauma modifies strength and composition of retrodiscal tissues of the goat temporomandibular joint. Oral Dis 5(4):329–336 · doi:10.1111/j.1601-0825.1999.tb00099.x
[36] Cowin SC, Hegedus DH (1976) Bone remodeling: a theory od adaptative elasticity. J Elasticity 6:313–326 · Zbl 0335.73028 · doi:10.1007/BF00041724
[37] Currey JD (2002) Bones. Structure and mechanics. Princeton University Press, Princeton
[38] DeVocht JW, Goel VK, Zeitler DL, Lew DA (1996) A study of the control of disc movement within the temporomandibular joint using the finite element technique. J Oral Maxil Surg 54:1431 · doi:10.1016/S0278-2391(96)90259-1
[39] Doblaré M, Cueto E, Calvo B, Martínez MA, García JM, Cegoñino J (2005) On the employ of meshless methods in biomechanics. Comput Methods Appl Mech Eng 194:801–821 · Zbl 1112.74563 · doi:10.1016/j.cma.2004.06.031
[40] Doblaré M, Cueto E, Calvo B, Martínez MA, García JM, Peña E (2004) Computational bioengineering. Current trends and applications. In: An analysis of the performance of meshless methods in biomechanics. Imperial College Press, London, pp 69–100
[41] Doblaré M, García JM (2001) Application of an anisotropic bone-remodeling model based on a damage-repair theory to the analysis of the proximal femur before and after total hip replacement. J Biomech 34(9):1157–1170 · doi:10.1016/S0021-9290(01)00069-0
[42] Doblaré M, García JM (2002) Anisotropic bone remodelling model based on a continuum damage-repair theory. J Biomech 35:1–17 · doi:10.1016/S0021-9290(01)00178-6
[43] Haut Donahue TL, Hull ML, Rashid MM, Jacobs RC (2002) A finite element model of the human knee joint for the study of tibio-femoral contact. ASME J Biomech Eng 124:273–280 · doi:10.1115/1.1470171
[44] Donzelli PS, Gallo LM, Spilker RL, Palla S (2004) Biphasic finite element simulation of the TMJ disc from in vivo kinematic and geometric measurements. J Biomech 37(11):1787–1791 · doi:10.1016/j.jbiomech.2004.01.029
[45] Donzelli PS, Spilker RS, Ateshian GA, Van Mow C (1999) Contact analysis of biphasic transversely isotropic cartilage layers and correlation with tissue failure. J Biomech 32:1037–1047 · doi:10.1016/S0021-9290(99)00106-2
[46] Dworkin, SF, Huggins KH, LeResche L, VonKorff M, Howard J, Truelove E, Sommers E (1990) Epidemiology of signs and symptoms in temporomandibular disorders: clinical signs in cases and controls. J Am Dent Assoc 120(3):273–281
[47] Eberhardt AW, Lewis JL, Keer LM (1991) Contact layered elastic spheres as a model of joint contact: effect of tangential load and friction. ASME J Biomech Eng 113:107–108 · doi:10.1115/1.2894076
[48] Van Eijden TM, Kouwenhoven E, Verbug J, Weijs WA (1986) A mathematical model of the patellofemoral joint. J Biomech 19:219–229 · doi:10.1016/0021-9290(86)90154-5
[49] Eisenberg SR, Grodzinsky AJ (1985) Swelling of articular cartilage and other connective tissues: electromechanochemical forces. J Orthopaed Res 3:148–159 · doi:10.1002/jor.1100030204
[50] Elmore SM, Sokoloff L, Norris G, Carmeci P (1963) Nature of imperfect elasticity of articular cartilage. J Appl Physiol 18:393–396
[51] Essinger JR, Leyvraz PF, Heegaard JH, Robertson DD (1989) A mathematical model for the evaluation of the behavior during flexion of condylar-type knee prostheses. J Biomech 22:1229–1241 · doi:10.1016/0021-9290(89)90225-X
[52] Fithian DC, Kelly MA, Van Mow C (1990) Material properties and structure-function relationship in the menisci. Clin Orthop Relat R 252:19–31
[53] Fletcher R (2001) Practical methods of optimization. Wiley · Zbl 0988.65043
[54] Flory PJ (1961) Thermodynamic relations for high elastic materials. Trans Faraday Soc 57:829–838 · doi:10.1039/tf9615700829
[55] Fortin M, Glowinski R (1983) Augmented Lagrangian methods: application to the numerical solution of boundary value problems, volume 15. North Holland, Amsterdam · Zbl 0525.65045
[56] Fox RJ, Harner CD, Sakane M, Carlin GJ, Woo SL-Y (1998) Determination of the in situ forces in the human posterior cruciate ligament using robotic technology. Am J Spors Med 26:395–401
[57] Frank CB, Jackson DW (1997) Reconstruction of the anterior cruciate ligament. J Bone Joint Surg 79-A:1556–1576
[58] Fu FH, Harner C, Vince KG (1994) Knee surgery. Willians and Wilkins, Baltimore
[59] Fung YC (1973) Biorheology of soft tissues. Biorheol 10:139–155
[60] Fung YC (1993) Biomechanics. Mechanical properties of living tissues. Springer
[61] Gabriel MG, Wong EK, Woo SL-Y, Yagi M, Debski RE (2004) Distribution of in situ forces in the anterior cruciate ligament in response to rotatory loads. J Orthopaed Res 22:85–89 · doi:10.1016/S0736-0266(03)00133-5
[62] Gardiner JC, Weiss JA (2003) Subject-specific finite element analysis of the human medial collateral ligament during valgus knee loading. J Orthopaed Res 21:1098–1106 · doi:10.1016/S0736-0266(03)00113-X
[63] Gardiner JC, Weiss JA, Rosenberg TD (2001) Strain in the human medial collateral ligament during valgus lading of the knee. Clin Orthop Relat R 391:266–274 · doi:10.1097/00003086-200110000-00031
[64] Garikipati K, Arruda EM, Grosh K, Narayanan H, Calve S (2004) A continuum treatment of growth in biological tissue: the coupling of mass transport and mechanics. J Mech Phys Solids 52(7):1595–1625 · Zbl 1159.74381 · doi:10.1016/j.jmps.2004.01.004
[65] Glowinski R, LeTallec P (1989) Augmented Lagrangian and operator-splitting methods in nonlinear mechanics. SIAM Studies in Applied Mathematics, Philadelphia · Zbl 0698.73001
[66] Gray H (1998) Gray’s Anatomy: The anatomical basis of medicine and surgery, volume 1, 38 edn. Harcourt
[67] Grodzinsky AJ (1973) Electromechanical and physicochemical properties of connective tissue. Crit Rev Biomed Eng 9:133–199
[68] Rouviere H, Delmas A (1985) Anatomie humaine, volume 1. Masson
[69] Harfe DT, Chuinard CR, Espinoza LM, Thomas KA, Solomonow M (1998) Elongation patterns of the collateral ligamnets of the human knee. Clin Biomech 13:163–175 · doi:10.1016/S0268-0033(97)00043-0
[70] Harner CD, Giffin R, Dunteman RC, Annunziata CC, Friedman MJ (2000) Evaluation and treatment of recurrent instability after anterior cruciate ligament reconstruction. J Bone Joint Surg 82-A:1652–1663
[71] Hayes WC, Mockros LF (1971) Viscoelastic constitutive relations for human articular cartilage. J Appl Physiol 18:562–568
[72] Heegard J, Leyvraz PF, Curnier A, Rakotomana L, Huiskes R (1995) The biomechanics of the human patella during passive knee flexion. J Biomech 28:1265–1279 · doi:10.1016/0021-9290(95)00059-Q
[73] Hefzy MS, Grood ES (1988) Review of knee models. Appl Mech Rev 41:1–13 · doi:10.1115/1.3151876
[74] Hefzy MS, Grood ES (1993) An analytical technique for modelling knee joint stiffness–Part II: Ligamentous geometric nonlinearities. ASME J Biomech Eng 105:143–145
[75] Hefzy MS, Yang H (1993) Three-dimensional anatomical model of the human patello-femoral joint to determine patello-femoralmotions and contact characteristics. ASME J Biomech Eng 15:289–302
[76] Hernandez CK, Beaupre GS, Keller TS, Carter DR (2001) The influence of bone volume fraction and this fraction on bone strength and modulus. Bone 29(1):74–78 · doi:10.1016/S8756-3282(01)00467-7
[77] Herrmann LR, Peterson FE (1968) A numerical procedure for viscoelastic stress analysis. In: Proceedings of the seventh meeting of ICRPG mechanical behaviour working group, Orlando, 1968
[78] Hibbit, Karlsson, Sorensen, Inc (2003) Abaqus user’s manual, v. 6.4. HKS inc. Pawtucket, RI, USA
[79] Hill AV (1938) The heat of shortening and the dynamic constans of muscle. Proc Roy Soc Lond B 126:136–195 · doi:10.1098/rspb.1938.0050
[80] Hirokawa S, Tsuruno R (1997) Hyperelastic model analysis of anterior cruciate ligament. Med Eng Phys 19:637–651 · doi:10.1016/S1350-4533(96)00077-X
[81] Hirokawa S, Tsuruno R (2000) Three-dimensional deformation and stress distribution in an analytical/computational model of the anterior cruciate ligament. J Biomech 33:1069–1077 · doi:10.1016/S0021-9290(00)00073-7
[82] Hirsch C (1944) A contribution to the pathogenesis chondromalacia of the patella. Acta Chir Scand 90:1–106
[83] Holmes MH (1986) Finite deformation of soft tissue: analysis of a mixture model in uni-axial compression. ASME J Biomech Eng 108:372–381 · doi:10.1115/1.3138633
[84] Holzapfel GA (2000) Nonlinear solid mechanics. Wiley, New York
[85] Holzapfel GA, Gasser TC, Ogden RW (2000) A new constitutive framework for arterial wall mechanics and a comparative study of material models. J Elasticity 61:1–48 · Zbl 1023.74033 · doi:10.1023/A:1010835316564
[86] Holzapfel GA, Gasser TC (2001) A viscoelastic model for fiber-reinforced composites at finite strains: continuum basis, computational aspects and applications. Comput Methods Appl Mech Eng 190:4379–4403 · doi:10.1016/S0045-7825(00)00323-6
[87] Holzapfel GA, Gasser TC, Stadler M (2002) A structural model for the viscoelastic behaviour of arterial walls: continuum formulation and finite element analysis. Eur J Mech A/Solid 21:441–463 · Zbl 1100.74597 · doi:10.1016/S0997-7538(01)01206-2
[88] Hu K, Qiguo R, Fang J, Mao JJ (2003) Effects of condylar fibrocartilage on the biomechanical loading of the human temporomandibular joint in a three-dimensional, nonlinear finite element model. Med Eng Phys 25:107–113 · doi:10.1016/S1350-4533(02)00191-1
[89] Huberti HH, Hayes WC (1984) Patellofemoral contact pressures. J Bone Joint Surg 66-A:715–724
[90] Hughes TJR (2000) The finite element method: linear static and dynamic finite analysis. Dover, New York
[91] Hull ML, Berns GS, Varma H, Patterson A (1995) Strain in the medial collateral ligament of the human knee under single and combined loads. J Biomech 29:199–206 · doi:10.1016/0021-9290(95)00046-1
[92] Humphrey JD (2002) Continuum biomechanics of soft biological tissues. Proc Roy Soc Lond A 175:1–44
[93] Huxley AF (1957) Muscle structure and theories of contraction. Prog Biophys Biophysic Chem 173:257–318
[94] Jackson JP (1968) Degenerative changes in the knee after meniscectomy. Br Med J 2:525 · doi:10.1136/bmj.2.5604.525
[95] Jacobs CR (1994) Numerical simulation of bone adaption to mechanical loading. PhD thesis, Stanford University, Stanford, California
[96] Jalani A, Shirazi-adl A, Bendjaballah MZ (1997) Biomechanics of human tibio-femoral joint in axial rotation. Knee 4:203–213 · doi:10.1016/S0968-0160(97)00266-4
[97] Jurvelin JS, Arokoski JP, Hunziker EB (1997) Optical and mechanical determination of Poisson’s ratio of adult bovine articular cartilage. J Biomech 33:235–241 · doi:10.1016/S0021-9290(96)00133-9
[98] Kastelic J, Galeski A (1978) The multicomposite structure of tendon. J Connect Tissue R 6:11–23 · doi:10.3109/03008207809152283
[99] Kempson GE, Freeman MAR, Swanson SA (1971) The determination of a creep modulus for articular cartilage form indentation tests on the human femoral head. J Biomech 4:239–250 · doi:10.1016/0021-9290(71)90030-3
[100] Keyac JH (2001) Improved prediction of proximal femoral fracture load using nonlinear finite element models. Med Eng Phys 23:165–173 · doi:10.1016/S1350-4533(01)00045-5
[101] Khalsa PS, Eisenberg SR (1997) Compressive behavior of articular cartilage is not completely explained by proteoglycan osmotic pressure. J Biomech 30:589–594 · doi:10.1016/S0021-9290(97)84508-3
[102] Koolstra JH, van Eijden TMGJ (1995) Biomechanical analysis of Jaw-closing movements. J Dent Res 74:1564–1570 · doi:10.1177/00220345950740091001
[103] Koolstra JH, van Eijden TMGJ (1999) Three-dimensional dynamical capabilities of the human masticatory muscles. J Biomech 32:145–152 · doi:10.1016/S0021-9290(98)00160-2
[104] Koolstra JH, van Eijden TMGJ (2004) Functional significance of the coupling between head and jaw movements. J Biomech 37:1387–1392 · doi:10.1016/j.jbiomech.2003.12.021
[105] Korhonen RM, Laasanen MS, Töyräs J, Lappalainen R, Helminen HJ, Jurvelin JS (2003) Fibril reinforced poroelastic model predicts specifically mechanical behavior of normal proteoglycan depleted and collagen degraded articular cartilage. J Biomech 36:1373–1379 · doi:10.1016/S0021-9290(03)00069-1
[106] Kurita H, Ohtsuka A, Kobayashi H, Kurashina K (2001) Resorption of the lateral pole of the mandibular condyle in temporomandibular disc displacement. Dentomaxillofac Rad 30:88–91 · doi:10.1038/sj.dmfr.4600578
[107] Lai WM, Mow VC, Roth V (1986) Effects of a nonlinear strain-dependent permeability and rate of compression on the stress behavior of articular cartilage. ASME J Biomech Eng 108:123–130 · doi:10.1115/1.3138591
[108] Lanir Y (1979) A structural theory for the homogeneous biaxial stress-strain relationship in flat collageneous tissues. J Biomech 12:423–436 · doi:10.1016/0021-9290(79)90027-7
[109] Lanir Y (1983) Constitutive equations for fibrous connective tissues. J Biomech 16:1–12 · doi:10.1016/0021-9290(83)90041-6
[110] LeRoux MA, Setton LA (2002) Experimental and biphasic FEM determinations of the material properties and hydraulic permeability of the meniscus in tension. ASME J Biomech Eng 124:315–321 · doi:10.1115/1.1468868
[111] Lewis JL, Lew WD, Hill JA, Hanley P, Ohland K, Kirstukas S, Hunter RE (1989) Knee joint motion and ligament forces before and after ACL reconstruction. ASME J Biomech Eng 111:97–106 · doi:10.1115/1.3168361
[112] Li G, Gil J, Kanamori A, Woo SL (1999) A validated three-dimensional computational model of a human joint. ASME J Biomech Eng 121:657–662 · doi:10.1115/1.2800871
[113] Li G, Lopez O, Rubash H (2001) Variability of a three-dimensional finite element model constructed using magnetic resonance images of a knee for joint contact stress analysis. ASME J Biomech Eng 123:341–346 · doi:10.1115/1.1385841
[114] Limbert G, Middleton J (2004) A tranversely isotropic viscohyperelastic material. Application to the modeling of biological soft connective tissues. Int J Solids Struct 41:4237–4260 · Zbl 1079.74520 · doi:10.1016/j.ijsolstr.2004.02.057
[115] Limbert G, Middleton J, Taylor M (2004) Finite element analysis of the human ACL subjected to passive anterior tibial loads. Comput Methods Biomech Biomed Eng 7:1–8 · doi:10.1080/10255840410001658839
[116] Linn FC, Sokoloff L (1965) Movement and composition of interstitial fluid of cartilage. Arthritis Rheum 8:481–494 · doi:10.1002/art.1780080402
[117] Van Loocke M, Lyons CG, Simms C (2004) Stress-strain-time relations for soft connective tissues. In: Prendergast PJ, McHugh PE (eds) Topics in bio-mechanical engineering. Trinity centre for bioengineering & National Centre for Biomedical Engineering Science, pp 216–234
[118] Lotz JC, Gerhart TN, Hayes WC (1991) Mechanical properties of metaphyseal bone in the proximal femur. J Biomech 24:317–329 · doi:10.1016/0021-9290(91)90350-V
[119] Li LP, Bushmann MD, Shirazi-Adl A (2000) A fibril reinforced nonhomogeneous poroelastic model for articular cartilage: inhomogeneous response in unconfined compression. J Biomech 33:1533–1541 · doi:10.1016/S0021-9290(00)00153-6
[120] Li LP, Soulhat J, Bushmann MD, Shirazi-Adl A (1999) Nonlinear analysis of cartilage in unconfined ramp compression usinga fibril reinforced poroelastic model. Clin Biomech 14:673–682 · doi:10.1016/S0268-0033(99)00013-3
[121] Luenberger DE (1989) Programacion lineal y no lineal. Addison-Wesley Iberoamericana
[122] Macnicol MF, Thomas NP (2000) The knee after menisctomy. J Bone Joint Surg 82-B:157–159
[123] Mak A (1986) The apparent viscoelastic behaviour of articular cartilage. The contributions from the intrinsic matrix viscoelastocity and intersticial fluid flows. ASME J Biomech Eng 108:123–130 · doi:10.1115/1.3138591
[124] Maroudas A (1976) Balance between swelling pressures and collagen tension in normal and degenerate cartilage. Nature 260:808–809 · doi:10.1038/260808a0
[125] Marsden JE, Hughes TJR (1994) Mathematical foundations of elasticity. Dover, New York
[126] Martins JAC, Pires EB, Salvado R, Dinis PB (1998) A numerical model of passive and active behavior of skeletal muscles. Comput Methods Appl Mech Eng 151:419–433 · Zbl 0906.73051 · doi:10.1016/S0045-7825(97)00162-X
[127] Matthews LS, Sonstegard DA, Henke JA (1977) Load bearing characteristics of the patello-femoral joint. Acta Orthop Scand 48:511–516 · doi:10.3109/17453677708989740
[128] Moeinzadeh M-H, Engin AE, Akkas N (1983) Two-dimensional dynamic modelling of human knee joint. J Biomech 16:253–264 · doi:10.1016/0021-9290(83)90133-1
[129] Mogo KE, Shirazi-Adl A (2004) Cruciate coupling and screw-home mechanics in passive knee joint during extension-flexion. J Biomech (in press)
[130] Mow CV, Kuei SC, Lai WM, Amstrong CG (1980) Biphasic creep and stress relaxation of articular cartilage in compression: theory and experiments. ASME J Biomech Eng 102:73–84 · doi:10.1115/1.3138202
[131] Mow VC, Holmes MH, Lai WM (1984) Fluid transport and mechanical properties of articular cartilage: a review. J Biomech 17:377–394 · doi:10.1016/0021-9290(84)90031-9
[132] Mow VC, Kwan MK, Lai WM, Armstrong CG (1985) A finite deformation theory for nonlinearity permeable soft hydrated biological tissues. In: Frontiers in biomechanics. Springer
[133] Mow VC, Guo XE (2003) Mechano-electrochemical properties of articular cartilage: their inhomogeneities and anisotropies. Annu Rev Biomed Eng 4:175–209 · doi:10.1146/annurev.bioeng.4.110701.120309
[134] Mow VC, Ratcliffe A (1997) Structure and function of articular cartilage and meniscus, 2nd edn. Lippincott-Raven, Philadelphia, pp 113–177
[135] Mow VC, Soslowsky LJ (1991) Basic orthopeadics biomechanics. In: Friction, lubrication and wear of diarthrodial joints. Raven Press, New York, pp 245–292
[136] Murakami T (1990) The lubrication in natural synovial joints and joint protheses. JSME Int J Vib Sys 33:465–474
[137] Nagahara K, Murata S, Nakamura S, Tsuchiya T (1999) Displacement and stress distribution in the temporomandibular joint during clenching. Angle Orthod 69:372
[138] Nickel JC, McLachlan KR (1994) In vivo measurement of the frictional properties of the temporomandibular joint disc. Arch Oral Biol 39(4)
[139] Nitzan DW (2001) The process of lubrication impairment and its involvement in temporomandibular joint disc displacement: a theoretical concept. J Oral Maxil Surg 59:36–45 · doi:10.1053/joms.2001.19278
[140] Oomens CWJ, Maenhout M, van Oijen CH, Drost MR, Baaijens FP (2003) Finite element modelling of contracting skeletal muscle. Phil Trans Roy Soc Lond B 358:1453–1460 · doi:10.1098/rstb.2003.1345
[141] Osborn JW (1993) A model to describe how ligaments may control symmetrical jaw opening movements in man. J Oral Rehabil 20:585–604 · doi:10.1111/j.1365-2842.1993.tb01646.x
[142] Park S, Krishnan R, Nicoll SB, Ateshian GA (2003) Cartilage interstitial fluid support in unconfined compression. J Biomech 36:1785–1796 · doi:10.1016/S0021-9290(03)00231-8
[143] Parsons JR, Black J (1977) The viscoelastic shear behavior of normal Rabbit Articular Cartilage. J Biomech 10:21–29 · doi:10.1016/0021-9290(77)90026-4
[144] Peña E, Calvo B, Martinez MA, Palanca D, Doblaré M (2006) Influence of the tunnel angle in acl reconstructions on the biomechanics of the knee joint. Clin Biomech 21(5):508–516 · doi:10.1016/j.clinbiomech.2005.12.013
[145] Peña E, Calvo B, Martinez MA, Doblaré M (2006) A three-dimensional finite element analysis of the combined behavior of ligaments and menisci in the healthy human knee joint. J Biomech 39:1686–1701 · doi:10.1016/j.jbiomech.2005.04.030
[146] Peña E, Calvo B, Martinez MA, Palanca D, Doblaré M (2005) Finite element analysis of the effect of meniscal tears and meniscectomy on human knee biomechanics. Clin Biomech 20:498–507 · doi:10.1016/j.clinbiomech.2005.01.009
[147] Peña E, Calvo B, Martinez MA, Palanca D, Doblaré M (2006) Why lateral meniscectomy is more dangerous than medial meniscectomy? a finite element study. J Orthopaed Res 24:1001–1010 · doi:10.1002/jor.20037
[148] Peña E, Calvo B, Martínez MA, Doblaré M (2007) An anisotropic visco-hyperelastic model for ligaments at finite strains: formulation and computational aspects. Int J Solid Struct 44:760–778 · Zbl 1176.74043 · doi:10.1016/j.ijsolstr.2006.05.018
[149] Peña E, Martinez MA, Calvo B, Doblaré M (2006) On the numerical treatment of initial strains in soft biological tissues. Int J Numer Meth Eng 68:836–860 · Zbl 1176.74126 · doi:10.1002/nme.1726
[150] Peña E, Martinez MA, Calvo B, Palanca D, Doblaré M (2005) A finite element simulation of the effect of graft stiffness and graft tensioning in ACL reconstruction. Clin Biomech 20:636–644 · doi:10.1016/j.clinbiomech.2004.07.014
[151] Peck C, Langenbach GEJ, Hannam AG (2000) Dynamic simulation of muscle and articular properties during human wide jaw opening. Arch Oral Biol 45:963–982 · doi:10.1016/S0003-9969(00)00071-6
[152] Pérez-Palomar A (2004) Three dimensional finite element simulation of the temporomandibular joint. PhD thesis, University of Zaragoza, Spain (in Spanish)
[153] Pérez-Palomar A, Doblaré M (2006) On the numerical simulation of the mechanical behaviour of articular cartilage. Int J Numer Meth Eng 67:1244–1271 · Zbl 1113.74048 · doi:10.1002/nme.1638
[154] Pérez-Palomar A, Doblaré M (2006) 3D Finite Element simulation of the opening movement of the mandible in healthy and pathologic situations. ASME J Biomech Eng 128:242–249 · doi:10.1115/1.2165697
[155] Pérez-Palomar A, Doblaré M (2006) Finite Element Analysis of the Temporomandibular Joint during lateral excursions of the mandible. J Biomech 39:1244–1271 · Zbl 1113.74048
[156] Pérez-Palomar A, Doblaré M (2006) The effect of collagen reinforcement in the behaviour of the temporomandibular joint disc. J Biomech 39:1075–1085 · doi:10.1016/j.jbiomech.2005.02.009
[157] Pioletti D (1997) Viscoelastic properties of soft tissues. PhD thesis, The University of Lausanne
[158] Pioletti DP, Rakotomanana L (2000) Finite element model of the anterior cruciate ligament. Eur J Mech A/Solids 19:749–759 · Zbl 0984.74052 · doi:10.1016/S0997-7538(00)00202-3
[159] Pioletti DP, Rakotomanana L, Leyvraz PF, Benvenuti JF (1997) Finite element model of the anterior cruciate ligament. Comput Methods Biomech Biomed Eng
[160] Pioletti DP, Rakotomanana LR, Benvenuti J-F, Leyvraz P-F (1998) Viscoelastic constitutive law in large deformations: application to human knee ligaments and tendons. J Biomech 31:753–757 · doi:10.1016/S0021-9290(98)00077-3
[161] Powell MJD (1969) Optimization. In: A method for nonlinear constraints in minimization problems. Academic, New York, pp 283–298
[162] Prater ME, Bailey BJ, and Quinn FB (1998) Temporomandibular joint disorders. The University of Texas Medical Branch
[163] Périé D, Hobatho MC (1998) In vivo determination of contact areas and pressure of the femorotibial joint using non-linear finite element analysis. Clin Biomech 13:394–402 · doi:10.1016/S0268-0033(98)00091-6
[164] Puso MA, Weiss JA (1998) Finite element implementation of anisotropic quasilinear viscoelasticity. ASME J Biomech Eng 120:162–170 · doi:10.1115/1.2834308
[165] Puxkandl R, Zizak I, Paris O, Tesch W, Bernstorff S, Purslow P, Fratzll P (2002) Viscoelastic properties of collagen: synchrotron radiation investigations and structural model. Phil Trans Roy Soc Lond B 357:191–197 · doi:10.1098/rstb.2001.1033
[166] Rachev A, Hayashi K (1999) Theoretical study of the effects of vascular smooth muscle contraction on strain and stress distributions in arteries. Ann Biomed Eng 27(4):459–468 · doi:10.1114/1.191
[167] Raminaraka NA, Terrier A, Theumann N, Siegrist O (2005) Effects of the posterior cruciate ligament reconstruction on the biomechanics of the knee joint: a finite element analysis. Clin Biomech 20:434–442 · doi:10.1016/j.clinbiomech.2004.11.014
[168] Sanjeevi RA (1982) A viscoelastic model for the mechanical properties of biological materials. J Biomech 15:107–109 · doi:10.1016/0021-9290(82)90042-2
[169] Sasaki N, Odajima S (1996) Stress-strain curve and Young’s modulus of a collagen molecule as determined by X-ray diffraction technique. J Biomech 29:655–658 · doi:10.1016/0021-9290(95)00110-7
[170] Sathasivam S, Walker PS (1997) A computer model with surface friction for the prediction of total knee kinematics. J Biomech 30:177–184 · doi:10.1016/S0021-9290(96)00114-5
[171] Sato H, Ström D, Carlsson GE (1995) Controversies on anatomy and function of the ligaments associated with the temporomandibular joint: a literature survey. J Orofac Pain 9:308–316
[172] Scheller G, Sobau C, Bülow JU (2001) Arthroscopic partial lateral meniscectomy in an otherwise normal knee: clinical, functional and radiographic results of a long-term follow-up study. Arthrosc 17:946–952 · doi:10.1053/jars.2001.28952
[173] Setton L, Elliott DM, Mow VC (1999) Altered mechanics of cartilage with osteoarthritis: human osteoarthritis and an experimental model of joint degeneration. Osteoarthr Cartilage 7:2–14 · doi:10.1053/joca.1998.0170
[174] Shengyi T, Yinghua X (1991) Biomechanical properties and collagen fiber orientation of TMJ discs in dogs: Part I. Gross anatomy and collagen fiber orientation of the discs. J Craniomandib Disord 5:28–34
[175] Simmons R, Howell S, Hull ML (2003) Effect of angle of the femoral and tibial tunnels in the coronal plane and incremental excision of the posterior cruciate ligament on tension of an anterior cruciate ligament graft: an in vitro study. J Bone Joint Surg 85-A:1018–1029
[176] Simo JC (1987) On a fully three-dimensional finite-strain viscoelastic damage model: Formulation and computational aspects. Comput Methods Appl Mech Eng 60:153–173 · Zbl 0588.73082 · doi:10.1016/0045-7825(87)90107-1
[177] Simo JC, Hughes TJR (1998) Computational inelasticity. Springer, New York · Zbl 0934.74003
[178] Simo JC, Taylor RL (1985) Consistent tangent operators for rate-independent elastoplasticity. Comput Methods Appl Mech Eng 48:101–118 · Zbl 0548.73018 · doi:10.1016/0045-7825(85)90070-2
[179] Simo JC, Taylor RL (1991) Quasi-incompresible finite elasticity in principal stretches. Continuum basis and numerical algorithms. Comput Methods Appl Mech Eng 85:273–310 · Zbl 0764.73104 · doi:10.1016/0045-7825(91)90100-K
[180] Simo JC, Taylor RL, Pister KS (1985) Variational and projection methods for the volume constraint in finite deformation elasto-plasticity. Comput Methods Appl Mech Eng 51:177–208 · Zbl 0554.73036 · doi:10.1016/0045-7825(85)90033-7
[181] Simo JC, Taylor R (1991) Quasi-incompressible finite elasticity in principal stretches. Continuum basis and numerical algorithm. Comput Methods Appl Mech Eng 85(3) · Zbl 0764.73104
[182] Sokoloff L (1963) Elasticity of articular cartilage: effect of ions and viscous solutions. Sci 141:1055–1056 · doi:10.1126/science.141.3585.1055
[183] Song Y, Debski RE, Musahl V, Thomas M, Woo SL-Y (2004) A three-dimensional finite element model of the human anterior cruciate ligament: a computational analysis with experimental validation. J Biomech 37:383–390 · doi:10.1016/S0021-9290(03)00261-6
[184] Soulhat J, Buschman MD, Shirazi-Adl A (1999) A fibril-network reinforced biphasic model of cartilage in unconfined compression. ASME J Biomech Eng 121:340–347 · doi:10.1115/1.2798330
[185] Spencer AJM (1954) Theory of invariants. In: Continuum physics. Academic, New York, pp 239–253
[186] Spilker RL, Suh JK (1990) Formulation and evaluation of a finite element model for the biphasic model of hydrated soft tissue. Comput Struct 35(4):425–439 · Zbl 0727.73061 · doi:10.1016/0045-7949(90)90067-C
[187] Suggs J, Wang C, Li G (2003) The effect of graft stiffnes on knee joint biomechanics after ACL reconstruction: a 3D computational simulation. Clin Biomech 18:35–43 · doi:10.1016/S0268-0033(02)00137-7
[188] Suh JK, Spilker RL, Holmes MR (1991) A penalty finite element analysis for non-linear mechanics of biphasic hydrated soft tissue under large deformation. Int J Numer Methods Eng 32:1411–1439 · Zbl 0763.73057 · doi:10.1002/nme.1620320704
[189] Suh JK, Bai S (1997) Biphasic poroviscoelastic behavior of cartilage in creep indentation test. In: Transactions 43rd annual meeting of the orthopaedic research society, San Francisco, 1997
[190] Tanaka E, Rodrigo P, Tanaka M, Kawaguchi A, Shibazaji T, Tanne K (2001) Stress analysis in the TMJ during jaw opening by use of a three dimensional finite element model based on magnetic resonance images. Int J Oral Maxil Surg 30:421–430 · doi:10.1054/ijom.2001.0132
[191] Tanaka E, Tanne K, Sakuda MA (1994) A three dimensional finite element model of the mandible including the TMJ and its application to stress analysis in the TMJ during clenching. Med Eng Phys 16:316–322 · doi:10.1016/1350-4533(94)90058-2
[192] Tanne K, Tanaka E, Sakuda M (1991) The elastic modulus of the temporomandibular joint disc from adult dogs. J Dent Res 70:1545 · doi:10.1177/00220345910700121401
[193] Taskaya-Yilmaz N, Ogutcen-Toller M (2001) Magnetic resonance imaging evaluation of temporomandibular joint disc deformities in relation to type of disc displacement. J Oral Maxil Surg 59:860–865 · doi:10.1053/joms.2001.25015
[194] Timoshenko S, Goodier JN (1972) Teoría de la elasticidad. Editorial Urmo
[195] Mow VC, Hayes WC (1991) Basic orthopaedic biomechanics. Raven Press, New York
[196] Vedi V, Williams A, Tennant SJ, Spouse E (1999) Meniscal movement. J Bone Joint Surg 81-B:37–41 · doi:10.1302/0301-620X.81B1.8928
[197] De Vita R, Slaughter WS (2005) A structural constitutive model for the strain rate-dependent behavior of anterior cruciate ligaments. Int J Solids Struct (in press) · Zbl 1120.74351
[198] Vose GP, Kubala AL (1959) Bone strength, its relationship tox-ray-determined ash content. Human Biol 31:261–270
[199] Walker PS, Erkman MJ (1975) The role of the menisci in force transmission across the knee. Clin Orthop Relat R 109:184–192 · doi:10.1097/00003086-197506000-00027
[200] Weinberg S, Lapointe, H (1987) Cervical extension-flexion injury (whiplash) and internal derangement of the temporomandibular joint. J Oral Maxil Surg 45(8):653–656 · doi:10.1016/0278-2391(87)90302-8
[201] Weiss J, Gardiner JC (2001) Computational modelling of ligament mechanics. Crit Rev Biomed Eng 29:1–70
[202] Weiss J, Gardiner JC, Bonifasi-Lista C (2002) Ligament material behavior is nonlinear, viscoelastic and rate-independent under shear loading. J Biomech 35:943–950 · doi:10.1016/S0021-9290(02)00041-6
[203] Weiss JA, Gardiner JC, Ellis BJ, Lujan TJ, Phatak NS (2005) Three-dimensional finite element modeling of ligaments: technical aspects. Med Eng Phys 27:845–861 · doi:10.1016/j.medengphy.2005.05.006
[204] Weiss JA, Maker BN, Govindjee S (1996) Finite element implementation of incompressible, transversely isotropic hyperelasticity. Comput Methods Appl Mech Eng 135:107–128 · Zbl 0893.73071 · doi:10.1016/0045-7825(96)01035-3
[205] Weiss JA, Maker BN, Schauer DA (1995) Treatment of initial stress in hyperelastic finite element models of soft tissues. In: Beaver Creek CO (ed) ASME summer bioengineering conference, 1995
[206] Weiss JA, Maker BN, Govindjee S (1996) Finite element implementation of incompressible, transversely isotropic hyperelasticity. Comput Methods Appl Mech Eng 135:107–128 · Zbl 0893.73071 · doi:10.1016/0045-7825(96)01035-3
[207] Wilkes CH (1978) Arthrography of the temporomandibular joint in patients with the TMJ pain-dysfunction syndrome. Minn Med 61(11):645–652
[208] Wilkes CH (1978) Structural and functional alterations of the temporomandibular joint. Northwest Dent 57(5):287–294
[209] Wilson W, van Donkelaar CC, van Rietbergen B, Huiskes R (2003) Pathways of load-induced cartilage damage causing degeneration in the knee after meniscectomy. J Biomech 36:845–851 · doi:10.1016/S0021-9290(03)00004-6
[210] Winters JM (1990) Hill-based muscle models: a system engineering perspective. In: Winters JM, Woo S (eds) Multyple muscle system. Springer, New York, pp 165–172
[211] Woo SL, Lubock P, Gómez MA, Jemmott G, Kuei SC, Akeson WH (1979) Large deformation nonhomogeneous and directional properties of articular cartilage in uniaxial tension. J Biomech 12:437–446 · doi:10.1016/0021-9290(79)90028-9
[212] Wriggers P (1995) Finite element algorithms for contact problems. Arch Comput Methods Eng 2:1–49 · doi:10.1007/BF02736195
[213] Yasunaga T, Kimura M, Kikuchi S (2001) Histologic change of the meniscus and cartilage tissue after meniscal suture. Clin Orthop Relat R 387:232–240 · doi:10.1097/00003086-200106000-00031
[214] Yoshiya M, Kurosaka M, Yamada M (1991) Optimal orientation of bone tunnels in the anterior cruciate ligament reconstruction. Trand ORS 16:602
[215] Zahalak GI (1981) A distributed moment approximation for kinetic theories of muscular contraction. Math Biosci 55:89–114 · Zbl 0475.92010 · doi:10.1016/0025-5564(81)90014-6
[216] Zahalak GI, Ma SP (1990) Muscle activation and contraction: constitutive relations based on cross-bridge kinetics. ASME J Biomech Eng 112:52–62 · doi:10.1115/1.2891126
[217] Zajac FE (1989) Muscle and tendon: properties, models, scaling and application ti biomechanics and motor control. Crit Rev Biomed Eng 17:359–411
[218] Zienkiewicz OC, Taylor RL (1994) The finite element method, volume 1: basic formulation and linear problems. McGraw-Hill
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.