×

Explosive transitions in complex networks’ structure and dynamics: percolation and synchronization. (English) Zbl 1359.34048

Summary: Percolation and synchronization are two phase transitions that have been extensively studied since already long ago. A classic result is that, in the vast majority of cases, these transitions are of the second-order type, i.e. continuous and reversible. Recently, however, explosive phenomena have been reported in complex networks’ structure and dynamics, which rather remind first-order (discontinuous and irreversible) transitions. Explosive percolation, which was discovered in 2009, corresponds to an abrupt change in the network’s structure, and explosive synchronization (which is concerned, instead, with the abrupt emergence of a collective state in the networks’ dynamics) was studied as early as the first models of globally coupled phase oscillators were taken into consideration. The two phenomena have stimulated investigations and debates, attracting attention in many relevant fields. So far, various substantial contributions and progresses (including experimental verifications) have been made, which have provided insights on what structural and dynamical properties are needed for inducing such abrupt transformations, as well as have greatly enhanced our understanding of phase transitions in networked systems. Our intention is to offer here a monographic review on the main-stream literature, with the twofold aim of summarizing the existing results and pointing out possible directions for future research.

MSC:

34D06 Synchronization of solutions to ordinary differential equations
82B43 Percolation
60K35 Interacting random processes; statistical mechanics type models; percolation theory
91D30 Social networks; opinion dynamics
05C82 Small world graphs, complex networks (graph-theoretic aspects)
90B10 Deterministic network models in operations research
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Jaeger, G., The Ehrenfest classification of phase transitions: introduction and evolution, Arch. Hist. Exact Sci., 53, 1, 51-81 (1998) · Zbl 0907.01036
[2] Stauffer, D.; Aharony, A., Introduction to Percolation Theory (1992), Taylor & Francis
[3] Bollobás, B.; Riordan, O., Percolation (2006), Cambridge University Press: Cambridge University Press Cambridge, New York, Melbourne · Zbl 1118.60001
[4] Blekhman, I., Synchronization in Science and Technology (1988), American Society of Mechanical Engineers
[5] Boccaletti, S.; Kurths, J.; Osipov, G.; Valladares, D.; Zhou, C., The synchronization of chaotic systems, Phys. Rep., 366, 1-2, 1-101 (2002) · Zbl 0995.37022
[6] Strogatz, S., Sync: The Emerging Science of Spontaneous Order (2003), Hyperion
[7] Boccaletti, S., The Synchronized Dynamics of Complex Systems (2008), Elsevier · Zbl 1191.37001
[8] Pikovsky, A.; Rosenblum, M.; Kurths, J., Synchronization: A Universal Concept in Nonlinear Sciences (2001), Cambridge University Press · Zbl 0993.37002
[9] Achlioptas, D.; D’Souza, R. M.; Spencer, J., Explosive percolation in random networks, Science, 323, 5920, 1453-1455 (2009) · Zbl 1226.05221
[10] Cho, Y. S.; Kahng, B., Discontinuous percolation transitions in real physical systems, Phys. Rev. E, 84, 050102 (2011)
[11] da Costa, R. A.; Dorogovtsev, S. N.; Goltsev, A. V.; Mendes, J. F.F., Explosive percolation transition is actually continuous, Phys. Rev. Lett., 105, 255701 (2010)
[12] Grassberger, P.; Christensen, C.; Bizhani, G.; Son, S.-W.; Paczuski, M., Explosive percolation is continuous, but with unusual finite size behavior, Phys. Rev. Lett., 106, 225701 (2011)
[13] Riordan, O.; Warnke, L., Explosive percolation is continuous, Science, 333, 6040, 322-324 (2011)
[14] Pazó, D., Thermodynamic limit of the first-order phase transition in the Kuramoto model, Phys. Rev. E, 72, 4, 046211 (2005)
[15] Gómez-Gardeñes, J.; Gómez, S.; Arenas, A.; Moreno, Y., Explosive synchronization transitions in scale-free networks, Phys. Rev. Lett., 106, 12, 1-4 (2011)
[16] Leyva, I.; Sevilla-Escoboza, R.; Buldú, J. M.; Sendiña-Nadal, I.; Gómez-Gardeñes, J.; Arenas, A.; Moreno, Y.; Gómez, S.; Jaimes-Reátegui, R.; Boccaletti, S., Explosive first-order transition to synchrony in networked chaotic oscillators, Phys. Rev. Lett., 108, 168702 (2012)
[17] Leyva, I.; Navas, A.; Sendiña-Nadal, I.; Almendral, J. A.; Buldú, J. M.; Zanin, M.; Papo, D.; Boccaletti, S., Explosive transitions to synchronization in networks of phase oscillators, Sci. Rep., 3, 1281 (2013)
[18] Leyva, I.; Sendiña-Nadal, I.; Almendral, J. A.; Navas, A.; Olmi, S.; Boccaletti, S., Explosive synchronization in weighted complex networks, Phys. Rev. E, 88, 4, 042808 (2013)
[19] Zhang, X.; Zou, Y.; Boccaletti, S.; Liu, Z., Explosive synchronization as a process of explosive percolation in dynamical phase space, Sci. Rep., 4, 5200 (2014)
[20] Zou, Y.; Pereira, T.; Small, M.; Liu, Z.; Kurths, J., Basin of attraction determines hysteresis in explosive synchronization, Phys. Rev. Lett., 112, 11, 114102 (2014)
[21] Zhang, X.; Boccaletti, S.; Guan, S.; Liu, Z., Explosive synchronization in adaptive and multilayer networks, Phys. Rev. Lett., 114, 3, 038701 (2015)
[22] Sendiña-Nadal, I.; Leyva, I.; Navas, A.; Villacorta-Atienza, J. A.; Almendral, J. A.; Wang, Z.; Boccaletti, S., Effects of degree correlations on the explosive synchronization of scale-free networks, Phys. Rev. E, 91, 3, 032811 (2015)
[23] Kuramoto, Y., Chemical Oscillations, Waves, and Turbulence (1984), Springer-Verlag · Zbl 0558.76051
[24] Araújo, N.; Grassberger, P.; Kahng, B.; Schrenk, K.; Ziff, R., Recent advances and open challenges in percolation, Eur. Phys. J. Spec. Top., 223, 11, 2307-2321 (2014)
[25] Bastas, N.; Giazitzidis, P.; Maragakis, M.; Kosmidis, K., Explosive percolation: Unusual transitions of a simple model, Physica A, 407, 54-65 (2014)
[26] Saberi, A. A., Recent advances in percolation theory and its applications, Rep., 578, 1-32 (2015) · Zbl 1357.82032
[27] D’Souza, R. M.; Nagler, J., Anomalous critical and supercritical phenomena in explosive percolation, Nat. Phys., 11, 531-538 (2015)
[28] Adler, J., Bootstrap percolation, Physica A, 453, 171 (1991)
[29] Holroyd, E. A., Sharp metastability threshold for two-dimensional bootstrap percolation, Probab. Theory Related Fields, 125, 2, 195-224 (2003) · Zbl 1042.60065
[30] Chalupa, J.; Leath, P. L.; Reich, G. R., Bootstrap percolation on a Bethe lattice, J. Phys. C: Solid State Phys., 12, 1, L31 (1979)
[31] Dorogovtsev, S. N.; Goltsev, A. V.; Mendes, J. F.F., \(k\)-core organization of complex networks, Phys. Rev. Lett., 96, 040601 (2006) · Zbl 1130.94024
[32] Echenique, P.; Gómez-Gardeñes, J.; Moreno, Y., Dynamics of jamming transitions in complex networks, Europhys. Lett., 71, 2, 325-331 (2005)
[33] Ziff, R. M., Explosive growth in biased dynamic percolation on two-dimensional regular lattice networks, Phys. Rev. Lett., 103, 045701 (2009)
[34] Radicchi, F.; Fortunato, S., Explosive percolation: A numerical analysis, Phys. Rev. E, 81, 036110 (2010)
[35] Ziff, R. M., Scaling behavior of explosive percolation on the square lattice, Phys. Rev. E, 82, 051105 (2010)
[36] Bastas, N.; Kosmidis, K.; Argyrakis, P., Explosive site percolation and finite-size hysteresis, Phys. Rev. E, 84, 066112 (2011)
[37] Choi, W.; Yook, S.-H.; Kim, Y., Explosive site percolation with a product rule, Phys. Rev. E, 84 (2011)
[38] Angst, S.; Dahmen, S. R.; Hinrichsen, H.; Hucht, A.; Magiera, M. P., Explosive ising, J. Stat. Mech., 2012, 06, L06002 (2012)
[39] Li, J.; Östling, M., Corrected finite-size scaling in percolation, Phys. Rev. E, 86, 040105 (2012)
[40] Choi, W.; Yook, S.-H.; Kim, Y., Bond-site duality and nature of the explosive-percolation phase transition on a two-dimensional lattice, Phys. Rev. E, 86, 051126 (2012)
[41] Reis, S. D.S.; Moreira, A. A.; Andrade, J., Nonlocal product rules for percolation, Phys. Rev. E, 85, 041112 (2012)
[42] Choi, W.; Chae, H.; Yook, S.-H.; Kim, Y., Dimensional dependence of phase transitions in explosive percolation, Phys. Rev. E, 90, 022123 (2014)
[43] Chae, H.; Yook, S.-H.; Kim, Y., Explosive percolation on the Bethe lattice, Phys. Rev. E, 85, 051118 (2012)
[44] Cho, Y. S.; Kim, S.-W.; Noh, J. D.; Kahng, B.; Kim, D., Finite-size scaling theory for explosive percolation transitions, Phys. Rev. E, 82, 042102 (2010)
[45] Kim, Y.; Yun, Y.-k.; Yook, S.-H., Explosive percolation in a nanotube-based system, Phys. Rev. E, 82, 061105 (2010)
[46] Nagler, J.; Levina, A.; Timme, M., Impact of single links in competitive percolation, Nat. Phys., 7, 265-270 (2011)
[47] Cho, Y. S.; Kahng, B., Suppression effect on explosive percolation, Phys. Rev. Lett., 107, 275703 (2011)
[48] Cho, Y. S.; Kim, J. S.; Park, J.; Kahng, B.; Kim, D., Percolation transitions in scale-free networks under the achlioptas process, Phys. Rev. Lett., 103, 1357, 02 (2009)
[49] Radicchi, F.; Fortunato, S., Explosive percolation in scale-free networks, Phys. Rev. Lett., 103, 16, 168701 (2009)
[50] Rozenfeld, H. D.; Gallos, L. K.; Makse, H. A., Explosive percolation in the human protein homology network, Eur. Phys. J. B, 75, 305-310 (2010) · Zbl 1202.82072
[51] Squires, S.; Sytwu, K.; Alcala, D.; Antonsen, T. M.; Ott, E.; Girvan, M., Weakly explosive percolation in directed networks, Phys. Rev. E, 87, 052127 (2013)
[52] Friedman, E. J.; Landsberg, A. S., Construction and analysis of random networks with explosive percolation, Phys. Rev. Lett., 103, 255701 (2009)
[53] Araújo, N. A.M.; Andrade, S.; Ziff, R. M.; Herrmann, H. J., Tricritical point in explosive percolation, Phys. Rev. Lett., 106, 095703 (2011)
[54] Andrade, J. S.; Herrmann, H. J.; Moreira, A. A.; Oliveira, C. L.N., Transport on exploding percolation clusters, Phys. Rev. E, 83, 031133 (2011)
[55] Giazitzidis, P.; Argyrakis, P., Generalized achlioptas process for the delay of criticality in the percolation process, Phys. Rev. E, 88, 024801 (2013)
[56] Hooyberghs, H.; Schaeybroeck, B. V., Criterion for explosive percolation transitions on complex networks, Phys. Rev. E, 83, 032101 (2011)
[57] Qian, J. H.; Han, D. D.; Ma, Y. G., Criticality and continuity of explosive site percolation in random networks, Europhys. Lett., 100, 4, 48006 (2012)
[58] Pan, R. K.; Kivelä, M.; Saramäki, J.; Kaski, K.; Kertész, J., Using explosive percolation in analysis of real-world networks, Phys. Rev. E, 83, 046112 (2011)
[59] Nagler, J.; Tiessen, T.; Gutch, H. W., Continuous percolation with discontinuities, Phys. Rev. X, 2, 031009 (2012)
[60] Riordan, O.; Warnke, L., Achlioptas processes are not always self-averaging, Phys. Rev. E, 86, 011129 (2012)
[61] Zhang, X.; Hu, X.; Kurths, J.; Liu, Z., Explosive synchronization in a general complex network, Phys. Rev. E, 88, 1, 010802 (2013)
[62] D’Souza, R. M.; Mitzenmacher, M., Local cluster aggregation models of explosive percolation, Phys. Rev. Lett., 104, 195702 (2010)
[63] Chen, H.; He, G.; Huang, F.; Shen, C.; Hou, Z., Explosive synchronization transitions in complex neural networks, Chaos, 23, 3, 033124 (2013) · Zbl 1323.34065
[64] da Costa, R. A.; Dorogovtsev, S. N.; Goltsev, A. V.; Mendes, J. F.F., Critical exponents of the explosive percolation transition, Phys. Rev. E, 89, 042148 (2014)
[65] da Costa, R. A.; Dorogovtsev, S. N.; Goltsev, A. V.; Mendes, J. F.F., Solution of the explosive percolation quest: scaling functions and critical exponents, Phys. Rev. E, 90, 022145 (2014)
[66] da Costa, R. A.; Dorogovtsev, S. N.; Goltsev, A. V.; Mendes, J. F.F., Solution of the explosive percolation quest, II. Infinite-order transition produced by the initial distributions of clusters, Phys. Rev. E, 91, 032140 (2015)
[67] da Costa, R. A.; Dorogovtsev, S. N.; Goltsev, A. V.; Mendes, J. F.F., Inverting the achlioptas rule for explosive percolation, Phys. Rev. E, 91, 042130 (2015)
[68] Yi, S. D.; Jo, W. S.; Kim, B. J.; Son, S.-W., Percolation properties of growing networks under an achlioptas process, Europhys. Lett., 103, 2, 26004 (2013)
[69] Chen, W.; Cheng, X.; Zheng, Z.; Chung, N. N.; D’Souza, R. M.; Nagler, J., Unstable supercritical discontinuous percolation transitions, Phys. Rev. E, 88, 042152 (2013)
[70] Chen, W.; D’Souza, R. M., Explosive percolation with multiple giant components, Phys. Rev. Lett., 106, 115701 (2011)
[71] Schrenk, K. J.; Felder, A.; Deflorin, S.; Araújo, N. A.M.; D’Souza, R. M.; Herrmann, H. J., Bohman-Frieze-Wormald model on the lattice, yielding a discontinuous percolation transition, Phys. Rev. E, 85, 031103 (2012)
[72] Zhang, Y.; Wei, W.; Guo, B.; Zhang, R.; Zheng, Z., Formation mechanism and size features of multiple giant clusters in generic percolation processes, Phys. Rev. E, 86, 051103 (2012)
[73] Chen, W.; Zheng, Z.; D’Souza, R. M., Deriving an underlying mechanism for discontinuous percolation, Europhys. Lett., 100, 6, 66006 (2012)
[74] Chen, W.; Schröder, M.; D’Souza, R. M.; Sornette, D.; Nagler, J., Microtransition cascades to percolation, Phys. Rev. Lett., 112, 155701 (2014)
[75] Waagen, A.; D’Souza, R. M., Given enough choice, simple local rules percolate discontinuously, Eur. Phys. J. B, 87, 12, 1-10 (2014) · Zbl 1515.82081
[76] Chen, Y.; Cao, Z.; Wang, S.; Hu, G., Self-organized correlations lead to explosive synchronization, Phys. Rev. E, 91, 2, 022810 (2015)
[77] Moreira, A. A.; Oliveira, E. A.; Reis, S. D.S.; Herrmann, H. J.; Andrade, J. S., Hamiltonian approach for explosive percolation, Phys. Rev. E, 81, 040101 (2010)
[78] Araújo, N. A.M.; Herrmann, H. J., Explosive percolation via control of the largest cluster, Phys. Rev. Lett., 105, 035701 (2010)
[79] Cho, Y. S.; Kahng, B.; Kim, D., Cluster aggregation model for discontinuous percolation transitions, Phys. Rev. E, 81, 030103(R) (2010)
[80] Manna, S. S.; Chatterjee, A., A new route to explosive percolation, Physica A, 390, 177-182 (2011)
[81] Schrenk, K. J.; Araújo, N. A.M.; Herrmann, H. J., Gaussian model of explosive percolation in three and higher dimensions, Phys. Rev. E, 84, 041136 (2011)
[82] Chung, N. N.; Chew, L. Y.; Lai, C. H., Spectral analysis on explosive percolation, Europhys. Lett., 101, 6, 66003 (2013)
[83] Cao, L.; Schwarz, J. M., Correlated percolation and tricriticality, Phys. Rev. E, 86, 061131 (2012)
[84] Fan, J.; Liu, M.; Li, L.; Chen, X., Continuous percolation phase transitions of random networks under a generalized achlioptas process, Phys. Rev. E, 85, 061110 (2012)
[85] Cho, Y. S.; Kim, Y. W.; Kahng, B., Discontinuous percolation in diffusion-limited cluster aggregation, J. Stat. Mech., 2012, 10, P10004 (2012) · Zbl 1456.82457
[86] Cho, Y. S.; Hwang, S.; Herrmann, H. J.; Kahng, B., Avoiding a spanning cluster in percolation models, Science, 339, 1185-1187 (2013)
[87] Ziff, R. M., Getting the jump on explosive percolation, Science, 339, 6124, 1159-1160 (2013)
[88] Cho, Y. S.; Kahng, B., Two types of discontinuous percolation transitions in cluster merging processes, Sci. Rep., 5, 11905 (2015)
[89] Baxter, G. J.; Dorogovtsev, S. N.; Goltsev, A. V.; Mendes, J. F.F., Bootstrap percolation on complex networks, Phys. Rev. E, 82, 1, 11103 (2010)
[90] Liu, Y.-Y.; Csóka, E.; Zhou, H.; Pósfai, M., Core percolation on complex networks, Phys. Rev. Lett., 109, 205703 (2012)
[91] Zhao, J.-C., Explosive synchronization of complex networks with different chaotic oscillators, Chin. Phys., 22, 6, 060506 (2013)
[92] Cellai, D.; Lawlor, A.; Dawson, K. A.; Gleeson, J. P., Critical phenomena in heterogeneous \(k\)-core percolation, Phys. Rev. E, 87, 022134 (2013)
[93] Parshani, R.; Buldyrev, S. V.; Havlin, S., Interdependent networks: Reducing the coupling strength leads to a change from a first to second order percolation transition, Phys. Rev. Lett., 105, 048701 (2010)
[94] Parshani, R.; Buldyrev, S. V.; Havlin, S., Critical effect of dependency groups on the function of networks, Proc. Natl. Acad. Sci., 108, 3, 1007-1010 (2011)
[95] Gao, J.; Buldyrev, S. V.; Havlin, S.; Stanley, H. E., Robustness of a network of networks, Phys. Rev. Lett., 107, 195701 (2011)
[96] Son, S.-W.; Grassberger, P.; Paczuski, M., Percolation transitions are not always sharpened by making networks interdependent, Phys. Rev. Lett., 107, 195702 (2011)
[97] Gao, J.; Buldyrev, S. V.; Stanley, H. E.; Havlin, S., Networks formed from interdependent networks, Nat. Phys., 8, 40-48 (2012)
[98] Li, W.; Bashan, A.; Buldyrev, S. V.; Stanley, H. E.; Havlin, S., Cascading failures in interdependent lattice networks: the critical role of the length of dependency links, Phys. Rev. Lett., 108, 228702 (2012)
[99] Shekhtman, L. M.; Berezin, Y.; Danziger, M. M.; Havlin, S., Robustness of a network formed of spatially embedded networks, Phys. Rev. E, 90, 012809 (2014)
[100] Baxter, G. J.; Dorogovtsev, S. N.; Goltsev, A. V.; Mendes, J. F.F., Avalanche collapse of interdependent networks, Phys. Rev. Lett., 109, 248701 (2012) · Zbl 1250.05099
[101] Li, M.; Jiang, X.; Ma, Y.; Shen, X.; Zheng, Z., Effect of mixing parts of modular networks on explosive synchronization, Europhys. Lett., 104, 5, 58002 (2013)
[102] Panagiotou, K.; Spöel, R.; Steger, A.; Thomas, H., Explosive percolation in Erdös-Rényi-like random graph processes, Electron. Notes Discrete Math., 38, 699-704 (2011) · Zbl 1274.05441
[103] Boettcher, S.; Singh, V.; Ziff, R. M., Ordinary percolation with discontinuous transitions, Nat. Commun., 3, 787 (2012)
[104] Matsoukas, T., Abrupt percolation in small equilibrated networks, Phys. Rev. E, 91, 052105 (2015)
[105] Maksymenko, M.; Moessner, R.; Shtengel, K., Reversible first-order transition in Pauli percolation, Phys. Rev. E, 91, 062103 (2015)
[106] Buldyrev, S. V.; Parshani, R.; Paul, G.; Stanley, H. E.; Havlin, S., Catastrophic cascade of failures in interdependent networks, Nature, 464, 1025-1028 (2010)
[108] Spencer, J.; Wormald, N., Birth control for giants, Combinatorica, 27, 587-628 (2007) · Zbl 1164.05062
[109] Riordan, O.; Warnke, L., Achlioptas process phase transitions are continuous, Ann. Appl. Probab., 22, 4, 1450-1464 (2012) · Zbl 1255.05176
[110] Bohman, T.; Frieze, A.; Wormald, N. C., Avoidance of a giant component in half the edge set of a random graph, Random Struct. Algorithms, 25, 4, 432-449 (2004)
[111] Pittel, B.; Spencer, J.; Wormald, N. C., Sudden emergence of a giant \(k\)-core in a random graph, J. Combin. Theory Ser. B, 111, 67 (1996) · Zbl 0860.05065
[112] Schwarz, J. M.; Liu, A. J.; Chayes, L. Q., The onset of jamming as the sudden emergence of an infinite k -core cluster, Europhys. Lett., 73, 4, 560 (2006)
[113] Oliveira, C. L.N.; Araújo, N. A.; Andrade, J. S.; Herrmann, H. J., Explosive electric breakdown due to conducting-particle deposition on an insulating substrate, Phys. Rev. Lett., 113, 155701 (2014)
[114] Landau, D.; Binder, K., A Guide to Monte Carlo Simulations in Statistical Physics (2015), Cambridge University Press: Cambridge University Press Cambridge, England · Zbl 1338.82002
[115] Chaikin, P. M.; Lubensky, T. C., Principles of Condensed Matter Physics (1995), Cambridge University Press: Cambridge University Press Cambridge, England
[116] Gross, T.; D’Lima, C. J.D.; Blasius, B., Epidemic dynamics on an adaptive network, Phys. Rev. Lett., 96, 208701 (2006)
[117] Zhang, Y.; Wei, W.; Guo, B.; Zhang, R.; Zheng, Z., Criticality and scaling behavior of percolation with multiple giant clusters under an achlioptas process, Phys. Rev. E, 88, 062103 (2013)
[118] Chen, W.; Zheng, Z.; Jiang, X.; Souza, R. M.D., Multiple discontinuous percolation transitions on scale-free networks, J. Stat. Mech., P04011 (2015)
[119] Bruce, A. D.; Wilding, N. B., Scaling fields and universality of the liquid-gas critical point, Phys. Rev. Lett., 68, 193-196 (1992)
[120] Privman, V., Finite-size Scaling Theory. Finite Size Scaling and Numerical Simulation of Statistical Systems (2014), World Scientific
[121] Tian, L.; Shi, D. N., The nature of explosive percolation phase transition, Phys. Lett. A, 376, 4, 286-289 (2012) · Zbl 1255.82050
[122] Bergé, P.; Pomeau, Y.; Vidal, C., Order Within Chaos: Towards a Deterministic Approach to Turbulence (1985), Wiley
[123] Manrubia, S.; Mikhailov, A.; Zanette, D., Emergence of Dynamical Order: Synchronization Phenomena in Complex Systems (2004), World Scientific · Zbl 1119.34001
[124] Letellier, C.; Aguirre, L. A., Interplay between synchronization, observability, and dynamics, Phys. Rev. E, 82, 1, 1-11 (2010)
[125] Bianco-Martinez, E.; Baptista, M. S.; Letellier, C., Symbolic computations of nonlinear observability, Phys. Rev. E, 91, 6, 062912 (2015)
[126] Sendiña-Nadal, I.; Letellier, C.; Boccaletti, S., Observability coefficients for predicting the class of synchronizability from the algebraic structure of the local oscillators, Phys. Rev. E, 94, Article 042205 pp. (2016)
[127] Daido, H., Intrinsic fluctuations and a phase transition in a class of large populations of interacting oscillators, J. Stat. Phys., 60, 5, 753-800 (1990) · Zbl 1086.82559
[128] Winfree, A. T., Biological rhythms and the behavior of populations of coupled oscillators, J. Theoret. Biol., 16, 1, 15-42 (1967)
[129] Valdeolmillos, M.; Gomis, a.; Sánchez-Andrés, J. V., In vivo synchronous membrane potential oscillations in mouse pancreatic beta-cells: lack of co-ordination between islets, J. Physiol., 493, 1, 9-18 (1996)
[130] Wood, K.; Van den Broeck, C.; Kawai, R.; Lindenberg, K., Continuous and discontinuous phase transitions and partial synchronization in stochastic three-state oscillators, Phys. Rev. E, 76, 041132 (2007)
[131] Filatrella, G.; Pedersen, N. F.; Wiesenfeld, K., Generalized coupling in the Kuramoto model, Phys. Rev. E, 75, 017201 (2007)
[132] Tanaka, H.-A.; Lichtenberg, A. J.; Oishi, S., First order phase transition resulting from finite inertia in coupled oscillator systems, Phys. Rev. Lett., 78, 11, 2104-2107 (1997)
[133] Acebrón, J. A.; Bonilla, L. L.; Spigler, R., Synchronization in populations of globally coupled oscillators with inertial effects, Phys. Rev. E, 62, 3437-3454 (2000)
[134] Choi, M.; Kim, H.; Kim, D.; Hong, H., Synchronization in a system of globally coupled oscillators with time delay, Phys. Rev. E, 61, 1, 371-381 (2000)
[135] Giannuzzi, F.; Marinazzo, D.; Nardulli, G.; Pellicoro, M.; Stramaglia, S., Phase diagram of a generalized Winfree model, Phys. Rev. E, 75, 5, 051104 (2007)
[136] Rosenblum, M.; Pikovsky, A., Self-organized quasiperiodicity in oscillator ensembles with global nonlinear coupling, Phys. Rev. Lett., 98, 6, 064101 (2007)
[137] Strogatz, S., (Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering. Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering, Advanced Book Program (1994), Westview Press)
[138] Afraimovich, V. S.; Verichev, N. N.; Rabinovich, M. I., Stochastic synchronization of oscillation in dissipative systems, Radiophys. Quantum Electron., 29, 9, 795-803 (1986)
[139] Pecora, L. M.; Carroll, T. L., Synchronization in chaotic systems, Phys. Rev. Lett., 64, 821-824 (1990) · Zbl 0938.37019
[140] Pecora, L. M.; Carroll, T. L., Master stability functions for synchronized coupled systems, Phys. Rev. Lett., 80, 2109-2112 (1998)
[141] Arnol’d, V. I., Small denominators. I. Mapping the circle onto itself, Izv. Ross. Akad. Nauk, Ser. Fiz., 25, 1, 21-86 (1961) · Zbl 0135.42603
[142] Rosenblum, M. G.; Pikovsky, A. S.; Kurths, J., Phase synchronization of chaotic oscillators, Phys. Rev. Lett., 76, 11, 1804-1807 (1996)
[143] Zaks, M. A.; Park, E.-H.; Rosenblum, M. G.; Kurths, J., Alternating locking ratios in imperfect phase synchronization, Phys. Rev. Lett., 82, 4228-4231 (1999)
[144] Pujol-Peré, A.; Calvo, O.; Matías, M. A.; Kurths, J., Experimental study of imperfect phase synchronization in the forced Lorenz system, Chaos, 13, 1, 319-326 (2003)
[145] Rosenblum, M.; Pikovsky, A.; Kurths, J., From phase to lag synchronization in coupled chaotic oscillators, Phys. Rev. Lett., 78, 22, 4193-4196 (1997)
[146] Voss, H. U., Anticipating chaotic synchronization, Phys. Rev. E, 61, 5115-5119 (2000)
[147] Voss, H. U., Anticipating chaotic synchronization, Phys. Rev. E. Phys. Rev. E, Phys. Rev. E, 61, 5115 (2000), (erratum). http://dx.doi.org/10.1103/PhysRevE.64.039904
[148] Heil, T.; Fischer, I.; Elsässer, W.; Mulet, J.; Mirasso, C. R., Chaos synchronization and spontaneous symmetry-breaking in symmetrically delay-coupled semiconductor lasers, Phys. Rev. Lett., 86, 5, 795-798 (2001)
[149] White, J. K.; Matus, M.; Moloney, J. V., Achronal generalized synchronization in mutually coupled semiconductor lasers, Phys. Rev. E, 65, 036229 (2002)
[150] Fischer, I.; Vicente, R.; Buldú, J. M.; Peil, M.; Mirasso, C. R.; Torrent, M. C.; García-Ojalvo, J., Zero-lag long-range synchronization via dynamical relaying, Phys. Rev. Lett., 97, 123902 (2006)
[151] Wagemakers, A.; Buldú, J. M.; Sanjuan, M. A.F., Experimental demonstration of bidirectional chaotic communication by means of isochronal synchronization, Europhys. Lett., 81, 4, 40005 (2008)
[152] Klein, E.; Gross, N.; Rosenbluh, M.; Kinzel, W.; Khaykovich, L.; Kanter, I., Stable isochronal synchronization of mutually coupled chaotic lasers, Phys. Rev. E, 73, 066214 (2006)
[153] Peil, M.; Larger, L.; Fischer, I., Versatile and robust chaos synchronization phenomena imposed by delayed shared feedback coupling, Phys. Rev. E, 76, 045201 (2007)
[154] Tiana-Alsina, J.; Hicke, K.; Porte, X.; Soriano, M. C.; Torrent, M. C.; Garcia-Ojalvo, J.; Fischer, I., Zero-lag synchronization and bubbling in delay-coupled lasers, Phys. Rev. E, 85, 026209 (2012)
[155] Da Silva, I. G.; Buldú, J. M.; Mirasso, C. R.; García-Ojalvo, J., Synchronization by dynamical relaying in electronic circuit arrays, Chaos, 16, 4, 043113 (2006) · Zbl 1151.94654
[156] Zhou, B. B.; Roy, R., Isochronal synchrony and bidirectional communication with delay-coupled nonlinear oscillators, Phys. Rev. E, 75, 026205 (2007)
[157] Wagemakers, A.; Buldú, J. M.; Sanjuán, M. A.F., Isochronous synchronization in mutually coupled chaotic circuits, Chaos, 17, 2, 023128 (2007) · Zbl 1159.37401
[158] Englert, A.; Kinzel, W.; Aviad, Y.; Butkovski, M.; Reidler, I.; Zigzag, M.; Kanter, I.; Rosenbluh, M., Zero lag synchronization of chaotic systems with time delayed couplings, Phys. Rev. Lett., 104, 114102 (2010)
[159] Wu, J. G.; Wu, Z. M.; Xia, G. Q.; Deng, T.; Lin, X. D.; Tang, X.; Feng, G. Y., Isochronous synchronization between chaotic semiconductor lasers over 40-km fiber links, IEEE Photonics Technol. Lett., 23, 24, 1854-1856 (2011)
[160] Vicente, R.; Mirasso, C. R.; Fischer, I., Simultaneous bidirectional message transmission in a chaos-based communication scheme, Opt. Lett., 32, 4, 403-405 (2007)
[161] Vicente, R.; Pipa, G.; Fischer, I.; Mirasso, C. R., Zero-lag long range synchronization of neurons is enhanced by dynamical relaying, (de Sá, J. M.; Alexandre, L. A.; Duch, W.; Mandic, D., Artificial Neural Networks (2007), Springer: Springer Berlin, Heidelberg), 904-913
[162] Vicente, R.; Gollo, L. L.; Mirasso, C. R.; Fischer, I.; Pipa, G., Dynamical relaying can yield zero time lag neuronal synchrony despite long conduction delays, Proc. Natl. Acad. Sci., 105, 44, 17157-17162 (2008)
[163] Esfahani, Z. G.; Valizadeh, A., Zero-lag synchronization despite inhomogeneities in a relay system, PLoS One, 9, 12, e112688 (2014)
[164] Voss, H. U., Dynamic long-term anticipation of chaotic states, Phys. Rev. Lett., 87, 014102 (2001)
[165] Masoller, C.; Zanette, D. H., Anticipated synchronization in coupled chaotic maps with delays, Physica A, 300, 3-4, 359-366 (2001) · Zbl 0973.37033
[166] Ciszak, M.; Calvo, O.; Masoller, C.; Mirasso, C. R.; Toral, R., Anticipating the response of excitable systems driven by random forcing, Phys. Rev. Lett., 90, 204102 (2003)
[167] Toral, R.; Masoller, C.; Mirasso, C. R.; Ciszak, M.; Calvo, O., Characterization of the anticipated synchronization regime in the coupled fitzhugh-nagumo model for neurons, Physica A, 325, 1-2, 192-198 (2003) · Zbl 1026.92014
[168] Ciszak, M.; Marino, F.; Toral, R.; Balle, S., Dynamical mechanism of anticipating synchronization in excitable systems, Phys. Rev. Lett., 93, 114102 (2004)
[169] Matias, F. S.; Carelli, P. V.; Mirasso, C. R.; Copelli, M., Anticipated synchronization in a biologically plausible model of neuronal motifs, Phys. Rev. E, 84, 021922 (2011)
[170] Kostur, M.; Hänggi, P.; Talkner, P.; Mateos, J. L., Anticipated synchronization in coupled inertial ratchets with time-delayed feedback: A numerical study, Phys. Rev. E, 72, 036210 (2005)
[171] Ciszak, M.; Mayol, C.; Mirasso, C. R.; Toral, R., Anticipated synchronization in coupled complex Ginzburg-Landau systems, Phys. Rev. E, 92, 032911 (2015)
[172] Voss, H. U., Real-time anticipation of chaotic states of an electronic circuit, Int. J. Bifurcation Chaos, 12, 07, 1619-1625 (2002)
[173] Pethel, S. D.; Corron, N. J.; Underwood, Q. R.; Myneni, K., Information flow in chaos synchronization: Fundamental tradeoffs in precision, delay, and anticipation, Phys. Rev. Lett., 90, 254101 (2003)
[174] Zamora-Munt, J.; Mirasso, C. R.; Toral, R., Suppression of deterministic and stochastic extreme desynchronization events using anticipated synchronization, Phys. Rev. E, 89, 012921 (2014)
[175] Sivaprakasam, S.; Shahverdiev, E. M.; Spencer, P. S.; Shore, K. A., Experimental demonstration of anticipating synchronization in chaotic semiconductor lasers with optical feedback, Phys. Rev. Lett., 87, 154101 (2001)
[176] Buldú, J. M.; Vicente, R.; Pérez, T.; Mirasso, C. R.; Torrent, M. C.; García-Ojalvo, J., Periodic entrainment of power dropouts in mutually coupled semiconductor lasers, Appl. Phys. Lett., 81, 27, 5105-5107 (2002)
[177] Ciszak, M.; Mirasso, C. R.; Toral, R.; Calvo, O., Predict-prevent control method for perturbed excitable systems, Phys. Rev. E, 79, 046203 (2009)
[178] Rulkov, N. F.; Sushchik, M. M.; Tsimring, L. S.; Abarbanel, H. D.I., Generalized synchronization of chaos in directionally coupled chaotic systems, Phys. Rev. E, 51, 2, 980-994 (1995)
[179] Kocarev, L.; Parlitz, U., Generalized synchronization, predictability, and equivalence of unidirectionally coupled dynamical systems, Phys. Rev. Lett., 76, 11, 1816-1819 (1996)
[180] Pyragas, K., Weak and strong synchronization of chaos, Phys. Rev. E, 54, 5, R4508-R4511 (1996)
[181] Abarbanel, H. D.I.; Rulkov, N.; Sushchik, M., Generalized synchronization of chaos: The auxiliary system approach, Phys. Rev. E, 53, 5, 4528-4535 (1996)
[182] Landsman, A. S.; Schwartz, I. B., Complete chaotic synchronization in mutually coupled time-delay systems, Phys. Rev. E, 75, 2, 026201 (2007)
[183] Moskalenko, O. I.; Koronovskii, A. A.; Hramov, A. E.; Boccaletti, S., Generalized synchronization in mutually coupled oscillators and complex networks, Phys. Rev. E, 86, 036216 (2012)
[184] Gutiérrez, R.; Sevilla-Escoboza, R.; Piedrahita, P.; Finke, C.; Feudel, U.; Buldú, J. M.; Huerta-Cuellar, G.; Jaimes-Reátegui, R.; Moreno, Y.; Boccaletti, S., Generalized synchronization in relay systems with instantaneous coupling, Phys. Rev. E, 88, 052908 (2013)
[185] Saxena, G.; Prasad, A.; Ramaswamy, R., Amplitude death: The emergence of stationarity in coupled nonlinear systems, Phys. Rep., 521, 5, 205-228 (2012)
[186] Koseska, A.; Volkov, E.; Kurths, J., Oscillation quenching mechanisms: Amplitude vs. oscillation death, Phys. Rep., 531, 4, 173-199 (2013) · Zbl 1356.34043
[187] Kuramoto, Y., Self-entrainment of a population of coupled non-linear oscillators, (International Symposium on Mathematical Problems in Theoretical Physics (1975), Springer: Springer Berlin, Heidelberg), 420-422 · Zbl 0335.34021
[188] Winfree, A. T., The Geometry of Biological Time (1980), Springer: Springer Berlin · Zbl 0856.92002
[189] Murray, J. D., Mathematical Biology (1989), Springer: Springer Berlin · Zbl 0682.92001
[190] (Kapral, R.; Showalter, K., Chemical Waves and Patterns (1995), Springer Netherlands)
[191] Kheowan, O.-U.; Mihaliuk, E.; Blasius, B.; Sendiña-Nadal, I.; Showalter, K., Wave mediated synchronization of nonuniform oscillatory media, Phys. Rev. Lett., 98, 074101 (2007)
[192] Leyva, I.; Navas, A.; Sendiña-Nadal, I.; Buldú, J. M.; Almendral, J. A.; Boccaletti, S., Synchronization waves in geometric networks, Phys. Rev. E, 84, 065101 (2011)
[193] Osipov, G. V.; Kurths, J.; Zhou, C., Synchronization in Oscillatory Networks, 103-128 (2007), Springer: Springer Berlin, Heidelberg · Zbl 1137.37018
[194] Kaneko, K., Spatiotemporal intermittency in coupled map lattices, Progr. Theoret. Phys., 74, 5, 1033-1044 (1985) · Zbl 0979.37505
[195] Kaneko, K., Theory and Applications of Coupled Map Lattices (1993), Wiley · Zbl 0777.00014
[196] Hasler, M.; Maistrenko, Y.; Popovych, O., Simple example of partial synchronization of chaotic systems, Phys. Rev. E, 58, 5, 6843-6846 (1998)
[197] Heagy, J. F.; Carroll, T. L.; Pecora, L. M., Synchronous chaos in coupled oscillator systems, Phys. Rev. E, 50, 3, 1874-1885 (1994)
[198] Heagy, J. F.; Pecora, L. M.; Carroll, T. L., Short wavelength bifurcations and size instabilities in coupled oscillator systems, Phys. Rev. Lett., 74, 21, 4185-4188 (1995)
[199] Belykh, V. N.; Belykh, I. V.; Hasler, M., Hierarchy and stability of partially synchronous oscillations of diffusively coupled dynamical systems, Phys. Rev. E, 62, 5, 6332-6345 (2000)
[200] Belykh, V. N.; Belykh, I. V.; Mosekilde, E., Cluster synchronization modes in an ensemble of coupled chaotic oscillators, Phys. Rev. E, 63, 3, 036216 (2001)
[201] Cross, M. C.; Hohenberg, P. C., Pattern formation outside of equilibrium, Rev. Modern Phys., 65, 3, 851-1112 (1993) · Zbl 1371.37001
[202] Aranson, I. S.; Kramer, L., The world of the complex Ginzburg-Landau equation, Rev. Modern Phys., 74, 1, 99-143 (2002) · Zbl 1205.35299
[203] Kaneko, K., Globally coupled circle maps, Physica D, 54, 1-2, 5-19 (1991) · Zbl 0729.58503
[204] Manrubia, S. C.; Mikhailov, A. S., Mutual synchronization and clustering in randomly coupled chaotic dynamical networks, Phys. Rev. E, 60, 2, 1579-1589 (1999)
[205] Popovych, O.; Maistrenko, Y.; Mosekilde, E., Loss of coherence in a system of globally coupled maps, Phys. Rev. E, 64, 2, 026205 (2001)
[206] Pikovsky, A.; Popovych, O.; Maistrenko, Y., Resolving clusters in chaotic ensembles of globally coupled identical oscillators, Phys. Rev. Lett., 87, 4, 044102 (2001)
[207] Kocarev, L.; Parlitz, U., Synchronizing spatiotemporal chaos in coupled nonlinear oscillators, Phys. Rev. Lett., 77, 11, 2206-2209 (1996)
[208] Zanette, D. H.; Mikhailov, A. S., Condensation in globally coupled populations of chaotic dynamical systems, Phys. Rev. E, 57, 1, 276-281 (1998)
[209] Han, S. K.; Kurrer, C.; Kuramoto, Y., Dephasing and bursting in coupled neural oscillators, Phys. Rev. Lett., 75, 17, 3190-3193 (1995)
[210] Daido, H.; Nakanishi, K., Diffusion-induced inhomogeneity in globally coupled oscillators: Swing-by mechanism, Phys. Rev. Lett., 96, 5, 054101 (2006)
[211] Yeldesbay, A.; Pikovsky, A.; Rosenblum, M., Chimeralike states in an ensemble of globally coupled oscillators, Phys. Rev. Lett., 112, 14, 144103 (2014)
[212] Mirollo, R. E.; Strogatz, S. H., Synchronization of pulse-coupled biological oscillators, SIAM J. Appl. Math., 50, 6, 1645-1662 (1990) · Zbl 0712.92006
[213] van Vreeswijk, C., Partial synchronization in populations of pulse-coupled oscillators, Phys. Rev. E, 54, 5, 5522-5537 (1996)
[214] Mohanty, P. K.; Politi, A., A new approach to partial synchronization in globally coupled rotators, J. Phys. A: Math. Gen., 39, 26, L415-L421 (2006) · Zbl 1094.37044
[215] Wang, W.; Kiss, I. Z.; Hudson, J. L., Experiments on arrays of globally coupled chaotic electrochemical oscillators: Synchronization and clustering, Chaos, 10, 1, 248 (2000)
[216] Pecora, L. M., Synchronization conditions and desynchronizing patterns in coupled limit-cycle and chaotic systems, Phys. Rev. E, 58, 1, 347-360 (1998)
[217] Abrams, D. M.; Strogatz, S. H., Chimera states for coupled oscillators, Phys. Rev. Lett., 93, 17, 174102 (2004)
[218] Battogtokh, D.; Kuramoto, Y., Turbulence of nonlocally coupled oscillators in the Benjamin-Feir stable regime, Phys. Rev. E, 61, 3, 3227-3229 (2000)
[219] Omel’chenko, O. E.; Maistrenko, Y. L.; Tass, P. A., Chimera states: The natural link between coherence and incoherence, Phys. Rev. Lett., 100, 4, 044105 (2008)
[220] Abrams, D. M.; Mirollo, R.; Strogatz, S. H.; Wiley, D. A., Solvable model for chimera states of coupled oscillators, Phys. Rev. Lett., 101, 8, 084103 (2008)
[221] Bordyugov, G.; Pikovsky, A.; Rosenblum, M., Self-emerging and turbulent chimeras in oscillator chains, Phys. Rev. E, 82, 3, 035205 (2010)
[222] Martens, E. A.; Laing, C. R.; Strogatz, S. H., Solvable model of spiral wave chimeras, Phys. Rev. Lett., 104, 4, 044101 (2010)
[223] Omel’chenko, O. E.; Wolfrum, M.; Maistrenko, Y. L., Chimera states as chaotic spatiotemporal patterns, Phys. Rev. E, 81, 6, 065201 (2010)
[224] Omelchenko, I.; Maistrenko, Y.; Hövel, P.; Schöll, E., Loss of coherence in dynamical networks: Spatial chaos and chimera states, Phys. Rev. Lett., 106, 23, 234102 (2011)
[225] Tinsley, M. R.; Nkomo, S.; Showalter, K., Chimera and phase-cluster states in populations of coupled chemical oscillators, Nat. Phys., 8, 9, 662-665 (2012)
[226] Nkomo, S.; Tinsley, M. R.; Showalter, K., Chimera states in populations of nonlocally coupled chemical oscillators, Phys. Rev. Lett., 110, 24, 244102 (2013)
[227] Hagerstrom, A. M.; Murphy, T. E.; Roy, R.; Hövel, P.; Omelchenko, I.; Schöll, E., Experimental observation of chimeras in coupled-map lattices, Nat. Phys., 8, 9, 658-661 (2012)
[228] Martens, E. A.; Thutupalli, S.; Fourriere, A.; Hallatschek, O., Chimera states in mechanical oscillator networks, Proc. Natl. Acad. Sci., 110, 26, 10563-10567 (2013)
[229] Laing, C. R., The dynamics of chimera states in heterogeneous Kuramoto networks, Physica D, 238, 16, 1569-1588 (2009) · Zbl 1185.34042
[230] Laing, C. R.; Rajendran, K.; Kevrekidis, I. G., Chimeras in random non-complete networks of phase oscillators, Chaos, 22, 1, 013132 (2012) · Zbl 1331.34055
[231] Kaneko, K., Clustering, coding, switching, hierarchical ordering, and control in a network of chaotic elements, Physica D, 41, 2, 137-172 (1990) · Zbl 0709.58520
[232] Panaggio, M. J.; Abrams, D. M., Chimera states: coexistence of coherence and incoherence in networks of coupled oscillators, Nonlinearity, 28, 3, R67-R87 (2015) · Zbl 1392.34036
[233] Osipov, G. V.; Pikovsky, A. S.; Rosenblum, M. G.; Kurths, J., Phase synchronization effects in a lattice of nonidentical Rössler oscillators, Phys. Rev. E, 55, 3, 2353-2361 (1997)
[234] Osipov, G. V.; Sushchik, M. M., Synchronized clusters and multistability in arrays of oscillators with different natural frequencies, Phys. Rev. E, 58, 6, 7198-7207 (1998)
[235] Pikovsky, A. S.; Rosenblum, M. G.; Kurths, J., Synchronization in a population of globally coupled chaotic oscillators, Europhys. Lett., 34, 3, 165 (1996)
[236] Strogatz, S. H.; Mirollo, R. E., Collective synchronisation in lattices of nonlinear oscillators with randomness, J. Phys. A, 21, 13, L699-L705 (1988) · Zbl 0654.60105
[237] Strogatz, S. H., From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators, Physica D, 143, 1, 1-20 (2000) · Zbl 0983.34022
[238] Acebrón, J. A.; Bonilla, L. L.; Pérez Vicente, C. J.; Ritort, F.; Spigler, R., The Kuramoto model: A simple paradigm for synchronization phenomena, Rev. Modern Phys., 77, 1, 137-185 (2005)
[239] Dörfler, F.; Bullo, F., Synchronization in complex networks of phase oscillators: A survey, Automatica, 50, 6, 1539-1564 (2014) · Zbl 1296.93005
[240] Rodrigues, F. A.; Peron, T. K.D.; Ji, P.; Kurths, J., The Kuramoto model in complex networks, Phys. Rep., 610, 1-98 (2015) · Zbl 1357.34089
[241] Ott, E.; Antonsen, T. M., Low dimensional behavior of large systems of globally coupled oscillators, Chaos, 18, 3, 037113 (2008) · Zbl 1309.34058
[242] Ott, E.; Antonsen, T. M., Long time evolution of phase oscillator systems, Chaos, 19, 2, 023117 (2009) · Zbl 1309.34059
[243] Martens, E. A.; Barreto, E.; Strogatz, S. H.; Ott, E.; So, P.; Antonsen, T. M., Exact results for the Kuramoto model with a bimodal frequency distribution, Phys. Rev. E, 79, 2, 026204 (2009)
[244] Pikovsky, A. S.; Rosenblum, M. G., Dynamics of heterogeneous oscillator ensembles in terms of collective variables, Physica D, 240, 9-10, 872-881 (2011) · Zbl 1233.37014
[245] Watts, D. J.; Strogatz, S. H., Collective dynamics of ‘small-world’ networks, Nature, 393, 440-442 (1998) · Zbl 1368.05139
[246] Boccaletti, S.; Latora, V.; Moreno, Y.; Chavez, M.; Hwang, D.-U., Complex networks: Structure and dynamics, Phys. Rep., 424, 4-5, 175-308 (2006) · Zbl 1371.82002
[247] Arenas, A.; Díaz-Guilera, A.; Kurths, J.; Moreno, Y.; Zhou, C., Synchronization in complex networks, Phys. Rep., 469, 3, 93-153 (2008)
[248] Barrat, A.; Barthlemy, M.; Vespignani, A., Dynamical Processes on Complex Networks (2008), Cambridge University Press: Cambridge University Press New York, NY, USA · Zbl 1198.90005
[249] Boccaletti, S.; Bianconi, G.; Criado, R.; del Genio, C.; Gómez-Gardeñes, J.; Romance, M.; Sendiña-Nadal, I.; Wang, Z.; Zanin, M., The structure and dynamics of multilayer networks, Phys. Rep., 544, 1, 1-122 (2014)
[250] Jalan, S.; Amritkar, R. E., Self-organized and driven phase synchronization in coupled maps, Phys. Rev. Lett., 90, 1, 014101 (2003) · Zbl 1020.37011
[251] Huang, L.; Chen, Q.; Lai, Y.-c.; Pecora, L. M., Generic behavior of master-stability functions in coupled nonlinear dynamical systems, Phys. Rev. E, 80, 3, 036204 (2009)
[252] Barahona, M.; Pecora, L. M., Synchronization in small-world systems, Phys. Rev. Lett., 89, 054101 (2002)
[253] Belykh, V. N.; Belykh, I. V.; Hasler, M., Connection graph stability method for synchronized coupled chaotic systems, Physica D, 195, 1-2, 159-187 (2004) · Zbl 1098.82622
[254] Donetti, L.; Hurtado, P. I.; Muñoz, M. A., Entangled networks, synchronization, and optimal network topology, Phys. Rev. Lett., 95, 18, 188701 (2005)
[255] Belykh, I.; de Lange, E.; Hasler, M., Synchronization of bursting neurons: What matters in the network topology, Phys. Rev. Lett., 94, 18, 188101 (2005)
[256] Toönjes, R.; Masuda, N.; Kori, H., Synchronization transition of identical phase oscillators in a directed small-world network, Chaos, 20, 3, 033108 (2010) · Zbl 1311.34088
[257] Nishikawa, T.; Motter, A. E.; Lai, Y.-C.; Hoppensteadt, F. C., Heterogeneity in oscillator networks: Are smaller worlds easier to synchronize?, Phys. Rev. Lett., 91, 1, 014101 (2003)
[258] Goh, K.-I.; Kahng, B.; Kim, D., Spectra and eigenvectors of scale-free networks, Phys. Rev. E, 64, 5, 051903 (2001)
[259] Motter, A. E.; Zhou, C. S.; Kurths, J., Enhancing complex-network synchronization, Europhys. Lett., 69, 3, 334-340 (2005)
[260] Motter, A. E.; Zhou, C.; Kurths, J., Network synchronization, diffusion, and the paradox of heterogeneity, Phys. Rev. E, 71, 1, 016116 (2005)
[261] Chavez, M.; Hwang, D.-U.; Amann, A.; Hentschel, H. G.E.; Boccaletti, S., Synchronization is enhanced in weighted complex networks, Phys. Rev. Lett., 94, 21, 218701 (2005)
[262] Hwang, D.-U.; Chavez, M.; Amann, A.; Boccaletti, S., Synchronization in complex networks with age ordering, Phys. Rev. Lett., 94, 13, 138701 (2005)
[263] Zhou, C.; Motter, A. E.; Kurths, J., Universality in the synchronization of weighted random networks, Phys. Rev. Lett., 96, 3, 034101 (2006)
[264] Chavez, M.; Hwang, D.-U.; Martinerie, J.; Boccaletti, S., Degree mixing and the enhancement of synchronization in complex weighted networks, Phys. Rev. E, 74, 6, 066107 (2006)
[265] Sorrentino, F.; di Bernardo, M.; Cuéllar, G. H.; Boccaletti, S., Synchronization in weighted scale-free networks with degree2˘013degree correlation, Physica D, 224, 1-2, 123-129 (2006) · Zbl 1117.34049
[266] Di Bernardo, M.; Garofalo, F.; Sorrentino, F., Effects of degree correlation on the synchronization of networks of oscillators, Int. J. Bifurcation Chaos, 17, 10, 3499-3506 (2007) · Zbl 1141.37319
[267] Sorrentino, F.; Pecora, L. M.; Hagerstrom, A. M.; Murphy, T. E.; Roy, R., Complete characterization of the stability of cluster synchronization in complex dynamical networks, Sci. Adv., 2, 4, e1501737 (2016)
[268] Lodato, I.; Boccaletti, S.; Latora, V., Synchronization properties of network motifs, Europhys. Lett., 78, 2, 28001 (2007)
[269] Do, A.-L.; Boccaletti, S.; Gross, T., Graphical notation reveals topological stability criteria for collective dynamics in complex networks, Phys. Rev. Lett., 108, 194102 (2012)
[270] Gross, T.; Blasius, B., Adaptive coevolutionary networks: a review, J. R. Soc. Interface, 5, 20, 259-271 (2008)
[271] Sorrentino, F.; Ott, E., Adaptive synchronization of dynamics on evolving complex networks, Phys. Rev. Lett., 100, 11, 114101 (2008)
[272] Yuan, W.-J.; Zhou, J.-F.; Li, Q.; Chen, D.-B.; Wang, Z., Spontaneous scale-free structure in adaptive networks with synchronously dynamical linking, Phys. Rev. E, 88, 2, 022818 (2013)
[273] Almendral, J. A.; Sendiña-Nadal, I.; Yu, D.; Leyva, I.; Boccaletti, S., Regulating synchronous states of complex networks by pinning interaction with an external node, Phys. Rev. E, 80, 6, 066111 (2009)
[274] Sorrentino, F.; di Bernardo, M.; Garofalo, F.; Chen, G., Controllability of complex networks via pinning, Phys. Rev. E, 75, 4, 046103 (2007)
[275] Josić, K.; Török, A., Network architecture and spatio-temporally symmetric dynamics, Physica D, 224, 1-2, 52-68 (2006) · Zbl 1118.34032
[276] Belykh, V. N.; Osipov, G. V.; Petrov, V. S.; Suykens, J. A.K.; Vandewalle, J., Cluster synchronization in oscillatory networks, Chaos, 18, 3, 037106 (2008) · Zbl 1309.34053
[277] Belykh, I.; Hasler, M., Mesoscale and clusters of synchrony in networks of bursting neurons, Chaos, 21, 1, 016106 (2011) · Zbl 1345.92035
[278] Poel, W.; Zakharova, A.; Schöll, E., Partial synchronization and partial amplitude death in mesoscale network motifs, Phys. Rev. E, 91, 2, 022915 (2015)
[279] Pecora, L. M.; Sorrentino, F.; Hagerstrom, A. M.; Murphy, T. E.; Roy, R., Cluster synchronization and isolated desynchronization in complex networks with symmetries., Nature Commun., 5, 4079 (2014)
[280] Fu, C.; Zhang, H.; Zhan, M.; Wang, X., Synchronous patterns in complex systems, Phys. Rev. E, 85, 6, 066208 (2012)
[281] Lin, W.; Fan, H.; Wang, Y.; Ying, H.; Wang, X., Controlling synchronous patterns in complex networks, Phys. Rev. E, 93, 4, 042209 (2016)
[282] Nicosia, V.; Valencia, M.; Chavez, M.; Díaz-Guilera, A.; Latora, V., Remote synchronization reveals network symmetries and functional modules, Phys. Rev. Lett., 110, 17, 174102 (2013)
[283] Fortunato, S., Community detection in graphs, Phys. Rep., 486, 3-5, 75-174 (2010)
[284] Park, K.; Lai, Y.-C.; Gupte, S.; Kim, J.-W., Synchronization in complex networks with a modular structure, Chaos, 16, 1, 015105 (2006) · Zbl 1144.37396
[285] Zhao, M.; Zhou, C.; Lü, J.; Lai, C. H., Competition between intra-community and inter-community synchronization and relevance in brain cortical networks, Phys. Rev. E, 84, 1, 016109 (2011)
[286] Aguirre, J.; Sevilla-Escoboza, R.; Gutiérrez, R.; Papo, D.; Buldú, J. M., Synchronization of interconnected networks: The role of connector nodes, Phys. Rev. Lett., 112, 24, 248701 (2014)
[287] Buscarino, A.; Frasca, M.; Gambuzza, L. V.; Hövel, P., Chimera states in time-varying complex networks, Phys. Rev. E, 91, 2, 022817 (2015)
[288] Zhu, Y.; Zheng, Z.; Yang, J., Chimera states on complex networks, Phys. Rev. E, 89, 2, 022914 (2014)
[289] Niebur, E.; Schuster, H. G.; Kammen, D. M.; Koch, C., Oscillator-phase coupling for different two-dimensional network connectivities, Phys. Rev. A, 44, 10, 6895-6904 (1991)
[290] Gómez-Gardeñes, J.; Moreno, Y.; Arenas, A., Synchronizability determined by coupling strengths and topology on complex networks, Phys. Rev. E, 75, 066106 (2007)
[291] Ichinomiya, T., Frequency synchronization in a random oscillator network, Phys. Rev. E, 70, 026116 (2004)
[292] Restrepo, J. G.; Ott, E.; Hunt, B. R., Onset of synchronization in large networks of coupled oscillators, Phys. Rev. E, 71, 3, 036151 (2005)
[293] Sonnenschein, B.; Schimansky-Geier, L., Onset of synchronization in complex networks of noisy oscillators, Phys. Rev. E, 85, 5, 051116 (2012)
[294] Hong, H.; Choi, M. Y.; Kim, B. J., Synchronization on small-world networks, Phys. Rev. E, 65, 2, 026139 (2002)
[295] Moreno, Y.; Pacheco, A. F., Synchronization of Kuramoto oscillators in scale-free networks, Europhys. Lett., 68, 4, 603-609 (2004)
[296] Lee, D.-S., Synchronization transition in scale-free networks: Clusters of synchrony, Phys. Rev. E, 72, 2, 026208 (2005)
[297] Oh, E.; Rho, K.; Hong, H.; Kahng, B., Modular synchronization in complex networks, Phys. Rev. E, 72, 4, 047101 (2005)
[298] McGraw, P. N.; Menzinger, M., Clustering and the synchronization of oscillator networks, Phys. Rev. E, 72, 1, 015101 (2005)
[299] Sorrentino, F.; Ott, E., Network synchronization of groups, Phys. Rev. E, 76, 5, 056114 (2007)
[300] Li, D.; Leyva, I.; Almendral, J. A.; Sendiña-Nadal, I.; Buldú, J. M.; Havlin, S.; Boccaletti, S., Synchronization interfaces and overlapping communities in complex networks, Phys. Rev. Lett., 101, 16, 168701 (2008)
[301] Rad, A. A.; Sendiña-Nadal, I.; Papo, D.; Zanin, M.; Buldú, J. M.; del Pozo, F.; Boccaletti, S., Topological measure locating the effective crossover between segregation and integration in a modular network, Phys. Rev. Lett., 108, 22, 228701 (2012)
[302] Gómez-Gardeñes, J.; Moreno, Y.; Arenas, A., Paths to synchronization on complex networks, Phys. Rev. Lett., 98, 034101 (2007)
[303] Sendiña-Nadal, I.; Ofran, Y.; Almendral, J. A.; Buldú, J. M.; Leyva, I.; Li, D.; Havlin, S.; Boccaletti, S., Unveiling protein functions through the dynamics of the interaction network, PLoS One, 6, 3, e17679 (2011)
[304] Bergner, A.; Frasca, M.; Sciuto, G.; Buscarino, A.; Ngamga, E. J.; Fortuna, L.; Kurths, J., Remote synchronization in star networks, Phys. Rev. E, 85, 2, 026208 (2012)
[305] Gambuzza, L. V.; Cardillo, A.; Fiasconaro, A.; Fortuna, L.; Gómez-Gardeñes, J.; Frasca, M., Analysis of remote synchronization in complex networks, Chaos, 23, 4, 043103 (2013) · Zbl 1331.34086
[306] Gambuzza, L. V.; Frasca, M.; Fortuna, L.; Boccaletti, S., Inhomogeneity induces relay synchronization in complex networks, Phys. Rev. E, 93, 4, 042203 (2016)
[307] Gambuzza, L. V.; Gómez-Gardeñes, J.; Frasca, M., Amplitude dynamics favors synchronization in complex networks, Sci. Rep., 6, 24915 (2016)
[308] De Domenico, M.; Solé-Ribalta, A.; Cozzo, E.; Kivelä, M.; Moreno, Y.; Porter, M. A.; Gómez, S.; Arenas, A., Mathematical formulation of multilayer networks, Phys. Rev. X, 3, 041022 (2013)
[309] Gambuzza, L. V.; Frasca, M.; Gómez-Gardeñes, J., Intra-layer synchronization in multiplex networks, Europhys. Lett., 110, 2, 20010 (2015)
[310] Gutiérrez, R.; Sendiña Nadal, I.; Zanin, M.; Papo, D.; Boccaletti, S., Targeting the dynamics of complex networks, Sci. Rep., 2, 396 (2012)
[311] Sevilla-Escoboza, R.; Sendiña-Nadal, I.; Leyva, I.; Gutiérrez, R.; Buldú, J. M.; Boccaletti, S., Inter-layer synchronization in multiplex networks of identical layers, Chaos, 26, 6, 065304 (2016) · Zbl 1374.34214
[312] Louzada, V. H.P.; Araújo, N.a. M.; Andrade, J. S.; Herrmann, H. J., Breathing synchronization in interconnected networks, Sci. Rep., 3, 3289 (2013)
[313] Lago-Fernández, L. F.; Huerta, R.; Corbacho, F.; Sigüenza, J. A., Fast response and temporal coherent oscillations in small-world networks, Phys. Rev. Lett., 84, 2758-2761 (2000)
[314] Lago-Fernández, L. F.; Corbacho, F. J.; Huerta, R., Connection topology dependence of synchronization of neural assemblies on class 1 and 2 excitability, Neural Netw., 14, 6-7, 687-696 (2001)
[315] Arenas, A.; Díaz-Guilera, A.; Pérez-Vicente, C. J., Synchronization reveals topological scales in complex networks, Phys. Rev. Lett., 96, 11, 114102 (2006)
[316] Boccaletti, S.; Ivanchenko, M.; Latora, V.; Pluchino, A.; Rapisarda, A., Detecting complex network modularity by dynamical clustering, Phys. Rev. E, 75, 4, 045102 (2007)
[317] Girón, A.; Saiz, H.; Bacelar, F. S.; Andrade, R. F.S.; Gómez-Gardeñes, J., Synchronization unveils the organization of ecological networks with positive and negative interactions, Chaos, 26, 6, 065302 (2016)
[318] Leyva, I.; Sendiña-Nadal, I.; Almendral, J.; Sanjuan, M., Sparse repulsive coupling enhances synchronization in complex networks, Phys. Rev. E, 74, 056112(7) (2006)
[319] Sendiña-Nadal, I.; Buldú, J. M.; Leyva, I.; Boccaletti, S., Phase locking induces scale-free topologies in networks of coupled oscillators, PLoS One, 3, 7, e2644 (2008)
[320] Aoki, T.; Aoyagi, T., Co-evolution of phases and connection strengths in a network of phase oscillators, Phys. Rev. Lett., 102, 3, 034101 (2009)
[321] Aoki, T.; Aoyagi, T., Self-organized network of phase oscillators coupled by activity-dependent interactions, Phys. Rev. E, 84, 6, 066109 (2011)
[322] Gutiérrez, R.; Amann, A.; Assenza, S.; Gómez-Gardeñes, J.; Latora, V.; Boccaletti, S., Emerging meso- and macroscales from synchronization of adaptive networks, Phys. Rev. Lett., 107, 23, 234103 (2011)
[323] Assenza, S.; Gutiérrez, R.; Gómez-Gardeñes, J.; Latora, V.; Boccaletti, S., Emergence of structural patterns out of synchronization in networks with competitive interactions, Sci. Rep., 1, 99 (2011)
[324] Avalos-Gaytán, V.; Almendral, J. A.; Papo, D.; Schaeffer, S. E.; Boccaletti, S., Assortative and modular networks are shaped by adaptive synchronization processes, Phys. Rev. E, 86, 1, 015101 (2012)
[325] Makarov, V.; Koronovskii, A.; Maksimenko, V.; Hramov, A.; Moskalenko, O.; Buldú, J.; Boccaletti, S., Emergence of a multilayer structure in adaptive networks of phase oscillators, Chaos Solitons Fractal, 84, 23-30 (2016) · Zbl 1355.34065
[326] Maistrenko, Y.; Popovych, O.; Burylko, O.; Tass, P. A., Mechanism of desynchronization in the finite-dimensional Kuramoto model, Phys. Rev. Lett., 93, 084102 (2004)
[327] van Hemmen, J. L.; Wreszinski, W. F., Lyapunov function for the Kuramoto model of nonlinearly coupled oscillators, J. Stat. Phys., 72, 1, 145-166 (1993) · Zbl 1097.82530
[328] Daido, H., Onset of cooperative entrainment in limit-cycle oscillators with uniform all-to-all interactions: bifurcation of the order function, Physica D, 91, 1, 24-66 (1996) · Zbl 0890.58067
[329] Pluchino, A.; Rapisarda, A., Metastability in the Hamiltonian mean field model and Kuramoto model, Physica A, 365, 1, 184-189 (2006)
[330] Basnarkov, L.; Urumov, V., Phase transitions in the Kuramoto model, Phys. Rev. E, 76, 057201 (2007)
[331] Basnarkov, L.; Urumov, V., Kuramoto model with asymmetric distribution of natural frequencies, Phys. Rev. E, 78, 011113 (2008)
[332] Ermentrout, G. B., Synchronization in a pool of mutually coupled oscillators with random frequencies, J. Math. Biol., 22, 1, 1-9 (1985) · Zbl 0558.92001
[333] Sakaguchi, H.; Kuramoto, Y., A soluble active rotater model showing phase transitions via mutual entertainment, Progr. Theoret. Phys., 76, 3, 576-581 (1986)
[334] Crawford, J. D., Amplitude expansions for instabilities in populations of globally-coupled oscillators, J. Stat. Phys., 74, 5, 1047-1084 (1994) · Zbl 0831.34040
[335] Pazó, D.; Montbrió, E., Existence of hysteresis in the Kuramoto model with bimodal frequency distributions, Phys. Rev. E, 80, 4, 046215 (2009)
[336] Sakaguchi, H., Cooperative phenomena in coupled oscillator systems under external fields, Progr. Theoret. Phys., 79, 1, 39-46 (1988)
[337] Strogatz, S. H.; Mirollo, R. E., Stability of incoherence in a population of coupled oscillators, J. Stat. Phys., 63, 3, 613-635 (1991)
[338] Strogatz, S. H.; Mirollo, R. E.; Matthews, P. C., Coupled nonlinear oscillators below the synchronization threshold: Relaxation by generalized Landau damping, Phys. Rev. Lett., 68, 2730-2733 (1992) · Zbl 0969.92501
[339] Okuda, K.; Kuramoto, Y., Mutual entrainment between populations of coupled oscillators, Progr. Theoret. Phys., 86, 6, 1159-1176 (1991)
[340] Bonilla, L. L.; Neu, J. C.; Spigler, R., Nonlinear stability of incoherence and collective synchronization in a population of coupled oscillators, J. Stat. Phys., 67, 1, 313-330 (1992) · Zbl 0925.82176
[341] Acebrón, J. A.; Bonilla, L. L.; De Leo, S.; Spigler, R., Breaking the symmetry in bimodal frequency distributions of globally coupled oscillators, Phys. Rev. E, 57, 5287-5290 (1998)
[342] Balmforth, N. J.; Sassi, R., A shocking display of synchrony, Physica D, 143, 1-4, 21-55 (2000) · Zbl 0961.35009
[343] Cohen, A. H.; Holmes, P. J.; Rand, R. H., The nature of the coupling between segmental oscillators of the lamprey spinal generator for locomotion: A mathematical model, J. Math. Biol., 13, 3, 345-369 (1982) · Zbl 0476.92003
[344] Sakaguchi, H.; Shinomoto, S.; Kuramoto, Y., Local and grobal self-entrainments in oscillator lattices, Progr. Theoret. Phys., 77, 5, 1005-1010 (1987)
[345] Daido, H., Lower critical dimension for populations of oscillators with randomly distributed frequencies: A renormalization-group analysis, Phys. Rev. Lett., 61, 231-234 (1988)
[346] Strogatz, S. H.; Mirollo, R. E., Phase-locking and critical phenomena in lattices of coupled nonlinear oscillators with random intrinsic frequencies, Physica D, 31, 2, 143-168 (1988) · Zbl 0642.60047
[347] Daido, H., Population dynamics of randomly interacting self-oscillators. I: Tractable models without frustration, Progress of Theoretical Physics, 77, 3, 622-634 (1987), arXiv:http://ptp.oxfordjournals.org/content/77/3/622.full.pdf+html
[348] Daido, H., Quasientrainment and slow relaxation in a population of oscillators with random and frustrated interactions, Phys. Rev. Lett., 68, 7, 1073 (1992)
[349] Lumer, E. D.; Huberman, B. A., Hierarchical dynamics in large assemblies of interacting oscillators, Phys. Lett. A, 160, 3, 227-232 (1991)
[351] Wiesenfeld, K.; Colet, P.; Strogatz, S. H., Synchronization transitions in a disordered josephson series array, Phys. Rev. Lett., 76, 3, 404-407 (1996)
[352] Wiesenfeld, K.; Colet, P.; Strogatz, S. H., Frequency locking in Josephson arrays: Connection with the Kuramoto model, Phys. Rev. E, 57, 1563-1569 (1998)
[353] Gómez-Gardeñes, J.; Moreno, Y., From scale-free to Erdos-Rényi networks, Phys. Rev. E, 73, 056124 (2006)
[354] Pereira, T.; Eroglu, D.; Bagci, G. B.; Tirnakli, U.; Jensen, H. J., Connectivity-driven coherence in complex networks, Phys. Rev. Lett., 110, 234103 (2013)
[355] Watanabe, S.; Strogatz, S. H., Integrability of a globally coupled oscillator array, Phys. Rev. Lett., 70, 2391-2394 (1993) · Zbl 1063.34505
[356] Vlasov, V.; Zou, Y.; Pereira, T., Explosive synchronization is discontinuous, Phys. Rev. E, 92, 1, 012904 (2015)
[357] Xu, C.; Gao, J.; Sun, Y.; Huang, X.; Zheng, Z., Explosive or continuous: Incoherent state determines the route to synchronization, Sci. Rep., 5, 12039 (2015)
[358] Jiang, S.; Tang, S.; Pei, S.; Fang, W.; Zheng, Z., Low dimensional behavior of explosive synchronization on star graphs, J. Stat. Mech., 2015, 10, P10007 (2015) · Zbl 1456.82141
[359] Coutinho, B. C.; Goltsev, A. V.; Dorogovtsev, S. N.; Mendes, J. F.F., Kuramoto model with frequency-degree correlations on complex networks, Phys. Rev. E, 87, 3, 032106 (2013)
[360] Peron, T. K.D.; Rodrigues, F. A., Determination of the critical coupling of explosive synchronization transitions in scale-free networks by mean-field approximations, Phys. Rev. E, 86, 5, 056108 (2012)
[361] Skardal, P. S.; Sun, J.; Taylor, D.; Restrepo, J. G., Effects of degree-frequency correlations on network synchronization: Universality and full phase-locking, Europhys. Lett., 101, 2, 20001 (2013)
[362] Pinto, R. S.; Saa, A., Explosive synchronization with partial degree-frequency correlation, Phys. Rev. E, 91, 2, 022818 (2015)
[363] Dan, Y.; Jun-Zhong, Y., Effects of correlation between network structure and dynamics of oscillators on synchronization transition in a Kuramoto model on scale-free networks, Commun. Theor. Phys., 61, 2, 197-202 (2014)
[364] Peron, T. K.D.; Rodrigues, F. A., Explosive synchronization enhanced by time-delayed coupling, Phys. Rev. E, 86, 1, 016102 (2012)
[365] Liu, W.; Wu, Y.; Xiao, J.; Zhan, M., Effects of frequency-degree correlation on synchronization transition in scale-free networks, Europhys. Lett., 101, 3, 38002 (2013)
[366] Li, P.; Zhang, K.; Xu, X.; Zhang, J.; Small, M., Reexamination of explosive synchronization in scale-free networks: The effect of disassortativity, Phys. Rev. E, 87, 4, 042803 (2013)
[367] Bender, E. A.; Canfield, E., The asymptotic number of labeled graphs with given degree sequences, J. Combin. Theor. Ser. A, 24, 3, 296-307 (1978) · Zbl 0402.05042
[368] Newman, M. E.J., Mixing patterns in networks, Phys. Rev. E, 67, 026126 (2003) · Zbl 1151.91746
[369] Xulvi-Brunet, R.; Sokolov, I., Reshuffling scale-free networks: From random to assortative, Phys. Rev. E, 70, 6, 066102 (2004)
[370] Zhu, L.; Tian, L.; Shi, D., Criterion for the emergence of explosive synchronization transitions in networks of phase oscillators, Phys. Rev. E, 88, 4, 042921 (2013)
[371] Zhang, Y.; Wan, W.-H., States and transitions in mixed networks, Front. Phys., 9, 4, 523-528 (2014)
[372] Zhu, L.; Tian, L.; Shi, D., Explosive transitions to synchronization in weighted static scale-free networks, Eur. Phys. J. B, 86, 11, 451 (2013)
[373] Hu, X.; Boccaletti, S.; Huang, W.; Zhang, X.; Liu, Z.; Guan, S.; Lai, C.-H., Exact solution for first-order synchronization transition in a generalized Kuramoto model, Sci. Rep., 4, 4, 7262 (2014)
[374] Xu, C.; Sun, Y.; Gao, J.; Qiu, T.; Zheng, Z.; Guan, S., Synchronization of phase oscillators with frequency-weighted coupling, Sci. Rep., 6, 21926 (2016)
[375] Zhou, W.; Chen, L.; Bi, H.; Hu, X.; Liu, Z.; Guan, S., Explosive synchronization with asymmetric frequency distribution, Phys. Rev. E, 92, 1, 012812 (2015)
[376] Navas, A.; Villacorta-Atienza, J. A.; Leyva, I.; Almendral, J. A.; Sendiña Nadal, I.; Boccaletti, S., Effective centrality and explosive synchronization in complex networks, Phys. Rev. E, 92, 062820 (2015)
[377] Skardal, P. S.; Arenas, A., Disorder induces explosive synchronization, Phys. Rev. E, 89, 6, 062811 (2014)
[378] Gupta, S.; Campa, A.; Ruffo, S., Nonequilibrium first-order phase transition in coupled oscillator systems with inertia and noise, Phys. Rev. E, 89, 2, 022123 (2014)
[379] Chavanis, P.-H., The Brownian mean field model, Eur. Phys. J. B, 87, 5, 1-33 (2014)
[380] Sonnenschein, B.; Sagués, F.; Schimansky-Geier, L., Networks of noisy oscillators with correlated degree and frequency dispersion, Eur. Phys. J. B, 86, 1, 12 (2013) · Zbl 1515.82092
[381] He, D.; Shi, P.; Stone, L., Noise-induced synchronization in realistic models, Phys. Rev. E, 67, 2, 027201 (2003)
[382] Zhou, C.; Kurths, J., Noise-induced phase synchronization and synchronization transitions in chaotic oscillators, Phys. Rev. Lett., 88, 23, 230602 (2002)
[383] Toral, R.; Mirasso, C. R.; Hernández-Garcıa, E.; Piro, O., Analytical and numerical studies of noise-induced synchronization of chaotic systems, Chaos, 11, 3, 665-673 (2001) · Zbl 0983.65135
[384] Neiman, A. B.; Russell, D. F., Synchronization of noise-induced bursts in noncoupled sensory neurons, Phys. Rev. Lett., 88, 13, 138103 (2002)
[385] Sanchez, E.; Matias, M.; Perez-Muñuzuri, V., Analysis of synchronization of chaotic systems by noise: an experimental study, Phys. Rev. E, 56, 4, 4068 (1997)
[386] Baier, G.; Santos, G. J.E.; Perales, H.; Rivera, M.; Müller, M.; Leder, R.; Parmananda, P., Self-exciting chaos as a dynamic model for irregular neural spiking, Phys. Rev. E, 62, 6, R7579 (2000)
[387] Börgers, C.; Kopell, N., Synchronization in networks of excitatory and inhibitory neurons with sparse, random connectivity, Neural Comput., 15, 3, 509-538 (2003) · Zbl 1085.68615
[388] Qu, Z.; Shiferaw, Y.; Weiss, J. N., Nonlinear dynamics of cardiac excitation-contraction coupling: an iterated map study, Phys. Rev. E, 75, 1, 011927 (2007)
[389] Galam, S., Contrarian deterministic effects on opinion dynamics: “the hung elections scenario”, Physica A, 333, 453-460 (2004)
[390] de la Lama, M. S.; López, J. M.; Wio, H. S., Spontaneous emergence of contrarian-like behaviour in an opinion spreading model, Europhys. Lett., 72, 5, 851 (2005)
[391] Hong, H.; Strogatz, S. H., Kuramoto model of coupled oscillators with positive and negative coupling parameters: An example of conformist and contrarian oscillators, Phys. Rev. Lett., 106, 054102 (2011)
[392] Yuan, D.; Zhang, M.; Yang, J., Dynamics of the Kuramoto model in the presence of correlation between distributions of frequencies and coupling strengths, Phys. Rev. E, 89, 1, 012910 (2014)
[393] Qiu, T.; Boccaletti, S.; Bonamassa, I.; Zou, Y.; Zhou, J.; Liu, Z.; Guan, S., Synchronization and Bellerophon state in conformists and contrarians oscillators, Sci. Rep., 6, 36713 (2016)
[394] Iatsenko, D.; Petkoski, S.; McClintock, P.; Stefanovska, A., Stationary and traveling wave states of the Kuramoto model with an arbitrary distribution of frequencies and coupling strengths, Phys. Rev. Lett., 110, 6, 064101 (2013)
[395] Kuramoto, Y.; Battogtokh, D., Coexistence of coherence and incoherence in nonlocally coupled phase oscillators, Nonlinear Phenom. Complex Syst., 5, 380-385 (2002)
[396] Shima, S.-i.; Kuramoto, Y., Rotating spiral waves with phase-randomized core in nonlocally coupled oscillators, Phys. Rev. E, 69, 3, 036213 (2004)
[397] Bi, H.; Hu, X.; Boccaletti, S.; Wang, X.; Zou, Y.; Liu, Z.; Guan, S., Coexistence of quantized, time dependent, clusters in globally coupled oscillators, Phys. Rev. Lett. (2016), in press
[400] Jiang, X.; Li, M.; Zheng, Z.; Ma, Y.; Ma, L., Effect of externality in multiplex networks on one-layer synchronization, J. Korean Phys. Soc., 66, 11, 1777-1782 (2015)
[401] Su, G.; Ruan, Z.; Guan, S.; Liu, Z., Explosive synchronization on co-evolving networks, Europhys. Lett., 103, 4, 48004 (2013)
[402] Barabási, A.-L.; Albert, R., Emergence of scaling in random networks, Science, 286, 5439, 509-512 (1999) · Zbl 1226.05223
[404] Radicchi, F., Percolation in real interdependent networks, Nat. Phys., 11, 597-602 (2015)
[406] Nardelli, P. H.; Rubido, N.; Wang, C.; Baptista, M. S.; Pomalaza-Raez, C.; Cardieri, P.; Latva-aho, M., Models for the modern power grid, Eur. Phys. J. Spec. Top., 223, 2423-2437 (2014)
[407] Chiang, H.-D.; Chu, C.-C.; Cauley, G., Direct stability analysis of electric power systems using energy functions: theory, applications, and perspective, Proc. IEEE, 83, 11, 1497-1529 (1995)
[408] Filatrella, G.; Nielsen, A. H.; Pedersen, N. F., Analysis of a power grid using a kuramoto-like model, Eur. Phys. J. B, 61, 4, 485-491 (2008)
[409] Chiang, H.-D.; Dobson, I.; Robcrt, J.; Thorp, J. S.; Fekih-ahmed, L., On voltage collapse in electric power systems, IEEE Trans. Power Syst., 5, 2, 601-611 (1990)
[410] Menck, P. J.; Heitzig, J.; Kurths, J.; Schellnhuber, H. J.; Menck, P. J., How dead ends undermine power grid stability, Nature Commun., 5, 3969 (2014)
[411] Rohden, M.; Sorge, A.; Timme, M.; Witthaut, D., Self-Organized synchronization in decentralized power grids, Phys. Rev. Lett., 109, 6, 064101 (2012)
[412] Rohden, M.; Sorge, A.; Witthaut, D.; Timme, M., Impact of network topology on synchrony of oscillatory power grids, Chaos, 24, 1, 013123 (2014) · Zbl 1374.05220
[413] Lozano, S.; Buzna, L.; Díaz-Guilera, A., Role of network topology in the synchronization of power systems, Eur. Phys. J. B, 85, 7, 1-8 (2012)
[414] Motter, A. E.; Myers, S. A.; Anghel, M.; Nishikawa, T., Spontaneous synchrony in power-grid networks, Nat. Phys., 9, 3, 191-197 (2013)
[415] Peron, T. K.D.; Ji, P.; Rodrigues, F. A.; Kurths, J., Effects of assortative mixing in the second-order kuramoto model, Phys. Rev. E, 91, 052805 (2015)
[416] Olmi, S.; Navas, A.; Boccaletti, S.; Torcini, A., Hysteretic transitions in the Kuramoto model with inertia, Phys. Rev. E, 90, 4, 042905 (2014)
[417] Ji, P.; Peron, T. K.D.; Menck, P. J.; Rodrigues, F.a.; Kurths, J., Cluster explosive synchronization in complex networks, Phys. Rev. Lett., 110, 21, 218701 (2013)
[418] Ji, P.; Peron, T. K.D.; Rodrigues, F. A.; Kurths, J., Analysis of cluster explosive synchronization in complex networks, Phys. Rev. E, 90, 6, 062810 (2014)
[419] Rohden, M.; Sorge, A.; Timme, M.; Witthaut, D., Self-organized synchronization in decentralized power grids, Phys. Rev. Lett., 109, 6, 064101 (2012)
[420] Buzsaki, G., Rhythms of the Brain (2006), Oxford University Press: Oxford University Press Oxford · Zbl 1204.92017
[421] Fell, J.; Axmacher, N., The role of phase synchronization in memory processes, Nat. Rev. Neurosci., 12, 2, 105-118 (2011)
[422] Kramer, M. A.; Cash, S. S., Epilepsy as a disorder of cortical network organization, Neuroscientist, 18, 4, 360-372 (2012)
[423] Yaffe, R. B.; Borger, P.; Megevand, P.; Groppe, D. M.; Kramer, M.a.; Chu, C. J.; Santaniello, S.; Meisel, C.; Mehta, A. D.; Sarma, S. V., Physiology of functional and effective networks in epilepsy, Clin. Neurophysiol., 126, 2, 227-236 (2015)
[424] Ben-Jacob, E.; Boccaletti, S.; Pomyalov, A.; Procaccia, I.; Towle, V. L., Detecting and localizing the foci in human epileptic seizures, Chaos, 17, 4, 043113 (2007) · Zbl 1163.37311
[425] Guye, M.; Régis, J.; Tamura, M.; Wendling, F.; Mc Gonigal, A.; Chauvel, P.; Bartolomei, F., The role of corticothalamic coupling in human temporal lobe epilepsy, Brain, 129, 7, 1917-1928 (2006)
[426] Perucca, P.; Dubeau, F.; Gotman, J., Intracranial electroencephalographic seizure-onset patterns: effect of underlying pathology, Brain, 137, 1, 183-196 (2014)
[427] Schindler, K.; Leung, H.; Elger, C. E.; Lehnertz, K., Assessing seizure dynamics by analysing the correlation structure of multichannel intracranial eeg, Brain, 130, 1, 65-77 (2007)
[428] Friedman, E. B.; Sun, Y.; Moore, J. T.; Hung, H.-T.; Meng, Q. C.; Perera, P.; Joiner, W. J.; Thomas, S. A.; Eckenhoff, R. G.; Sehgal, A.; Kelz, M. B., A conserved behavioral state barrier impedes transitions between anesthetic-induced unconsciousness and wakefulness: Evidence for neural inertia, PLoS One, 5, 7, e11903 (2010)
[429] Joiner, W. J.; Friedman, E. B.; Hung, H.-T.; Koh, K.; Sowcik, M.; Sehgal, A.; Kelz, M. B., Genetic and anatomical basis of the barrier separating wakefulness and anesthetic-induced unresponsiveness, PLoS Genetics, 9, 9, e1003605 (2013)
[430] Kim, M.; Mashour, G. A.; Blain-Moraes, S.; Vanini, G.; Tarnal, V.; Janke, E.; Hudetz, A. G.; Lee, U., Functional and topological conditions for explosive synchronization develop in human brain networks with the onset of anesthetic-induced unconsciousness, Front. Comput. Neurosci., 10, 1 (2016)
[431] Nakao, H.; Mikhailov, A. S., Diffusion-induced instability and chaos in random oscillator networks, Phys. Rev. E, 79, 036214 (2009)
[432] Bi, H.; Hu, X.; Zhang, X.; Zou, Y.; Liu, Z.; Guan, S., Explosive oscillation death in coupled Stuart-Landau oscillators, Europhys. Lett., 108, 5, 50003 (2014)
[433] Matthews, P. C.; Mirollo, R. E.; Strogatz, S. H., Dynamics of a large system of coupled nonlinear oscillators, Physica D, 52, 2, 293-331 (1991) · Zbl 0742.34035
[434] Atay, F. M., Distributed delays facilitate amplitude death of coupled oscillators, Phys. Rev. Lett., 91, 094101 (2003)
[435] Pisarchik, A. N.; Jaimes-Reátegui, R.; Villalobos-Salazar, J. R.; García-López, J. H.; Boccaletti, S., Synchronization of chaotic systems with coexisting attractors, Phys. Rev. Lett., 96, 244102 (2006)
[436] Pisarchik, A. N.; Jaimes-Reátegui, R.; Sevilla-Escoboza, R.; Boccaletti, S., Experimental approach to the study of complex network synchronization using a single oscillator, Phys. Rev. E, 79, 055202(R) (2009)
[437] Kumar, P.; Verma, D. K.; Parmananda, P.; Boccaletti, S., Experimental evidence of explosive synchronization in mercury beating-heart oscillators, Phys. Rev. E, 91, 6, 062909 (2015)
[438] Zhang, X.; Guan, S.; Zou, Y.; Chen, X.; Liu, Z., Suppressing explosive synchronization by contrarians, Europhys. Lett., 113, 2, 28005 (2016)
[439] Louzada, V.; Araújo, N.; Andrade, J.; Herrmann, H., How to suppress undesired synchronization, Sci. Rep., 2, 658 (2012)
[440] Restrepo, J. G.; Ott, E.; Hunt, B. R., Synchronization in large directed networks of coupled phase oscillators, Chaos, 16, 1, 015107 (2006) · Zbl 1144.37402
[441] Zanette, D. H., Synchronization and frustration in oscillator networks with attractive and repulsive interactions, Europhys. Lett., 72, 2, 190 (2005)
[442] Freund, T.; Buzsáki, G., Interneurons of the hippocampus, Hippocampus, 6, 4, 347-470 (1996), http://dx.doi.org/10.1002/(SICI)1098-1063(1996)6:4<347::AID-HIPO1>3.0.CO;2-I
[443] Klausberger, T.; Somogyi, P., Neuronal diversity and temporal dynamics: the unity of hippocampal circuit operations, Science, 321, 5885, 53-57 (2008)
[444] Zhang, X.; Bi, H.; Guan, S.; Liu, J.; Liu, Z., Model bridging chimera state and explosive synchronization, Phys. Rev. E, 94, 012204 (2016)
[445] Chen, L.; Ghanbarnejad, F.; Cai, W.; Grassberger, P., Outbreaks of coinfections: The critical role of cooperativity, Europhys. Lett., 104, 5, 50001 (2013)
[446] Hébert-Dufresne, L.; Althouse, B. M., Complex dynamics of synergistic coinfections on realistically clustered networks, Proc. Natl. Acad. Sci., 112, 33, 10551-10556 (2015) · Zbl 1355.92112
[447] Gómez-Gardeñes, J.; Lotero, L.; Taraskin, S.; Pérez-Reche, F., Explosive contagion in networks, Sci. Rep., 6, 19767 (2016)
[448] Majdandzic, A.; Podobnik, B.; Buldyrev, S. V.; Kenett, D. Y.; Havlin, S.; Stanley, H. E., Spontaneous recovery in dynamical networks, Nat. Phys., 10, 1, 34-38 (2014)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.