×

Higher order global differentiability local approximations for 2-D distorted quadrilateral elements. (English) Zbl 1183.65141

Summary: This paper presents a development of higher order global differentiability local approximations for two dimensional quadrilateral elements of distorted geometries. The distorted quadrilateral elements in physical coordinate space \(x y\) are mapped into a master element in the \(\xi \eta \) natural coordinate space in a two unit square with the origin at the center of the element. For the master element, 2-D \(C^{00}p\)-version hierarchical local approximations are considered.
The degrees of freedom and the approximation functions from the mid-side nodes and/or center node are borrowed to derive the desired derivative degrees of freedom at the corner nodes in the \(\xi \eta \) space for various higher order global differentiability approximations in the \(\xi \eta \) space. These derivative degrees of freedom at the corner nodes in \(\xi \eta \) space are then transformed from the natural coordinate space \((\xi , \eta )\) to the physical coordinate space \((x, y)\) using Jacobians of transformations to obtain the desired higher order global differentiability local approximations in the \(x y\) coordinate space.
A Pascal rectangle is used to establish a systematic procedure for the selection of degrees of freedom and the corresponding approximation functions from the \(C^{00}p\)-version hierarchical element for the global differentiability of any desired order in \(x y\) space. Numerical studies are conducted to demonstrate the performance of the elements in terms of accuracy and convergence rates for the boundary value problems described by self-adjoint, non-self-adjoint and non-linear differential operators using undistorted as well as distorted discretizations. The numerical studies in this paper are only presented for self-adjoint operator.

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
74S05 Finite element methods applied to problems in solid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Maduri R. K., PhD thesis, in: Higher Order Differentiability Local Approximations for 2-D and 3-D distorted Element Geometries (2008)
[2] Johnson C., Numerical solution of Partial Differential Equations by the Finite Element Method (1987) · Zbl 0628.65098
[3] Ciarlet P. G., The Finite Element Method for Elliptic Problems (1978) · Zbl 0383.65058
[4] Carey G. F., Finite Elements, Mathematical Aspects (1984) · Zbl 0558.73064
[5] Strang G., An Analysis of the Finite Element Method (1973) · Zbl 0356.65096
[6] Reddy J. N., Functional Analysis and Variational Methods in Engineering (1986) · Zbl 0623.73025
[7] DOI: 10.1142/S1465876302000605 · doi:10.1142/S1465876302000605
[8] DOI: 10.1142/S1465876303002179 · doi:10.1142/S1465876303002179
[9] DOI: 10.1142/S1465876304002307 · doi:10.1142/S1465876304002307
[10] DOI: 10.1080/15502280701252321 · Zbl 1135.65376 · doi:10.1080/15502280701252321
[11] DOI: 10.1002/nme.1620020107 · Zbl 0262.73072 · doi:10.1002/nme.1620020107
[12] DOI: 10.1002/nme.1620200510 · Zbl 0542.65067 · doi:10.1002/nme.1620200510
[13] DOI: 10.1016/0020-7225(69)90065-2 · Zbl 0185.42201 · doi:10.1016/0020-7225(69)90065-2
[14] DOI: 10.1002/nme.1620040105 · Zbl 0255.73095 · doi:10.1002/nme.1620040105
[15] Zienkiewicz, O. C., Irons, B. M., Scott, F. C. and Campbell, J. Three Dimensional Stress Analysis. Proc. IUTAM Symp. on High Speed Computing of Elastic Structures. pp.413–433.
[16] DOI: 10.1007/BF01398256 · Zbl 0487.65058 · doi:10.1007/BF01398256
[17] DOI: 10.1007/BF00298636 · Zbl 0634.73058 · doi:10.1007/BF00298636
[18] DOI: 10.1007/BF01389733 · Zbl 0614.65088 · doi:10.1007/BF01389733
[19] DOI: 10.1137/0725048 · Zbl 0655.65124 · doi:10.1137/0725048
[20] DOI: 10.1007/BF02129241 · Zbl 0373.73092 · doi:10.1007/BF02129241
[21] DOI: 10.1016/0045-7949(76)90031-6 · Zbl 0331.73077 · doi:10.1016/0045-7949(76)90031-6
[22] Surana K. S., Comput. Struct. 38 (1991)
[23] DOI: 10.1002/nme.1620310403 · Zbl 0825.73798 · doi:10.1002/nme.1620310403
[24] DOI: 10.1016/0045-7949(91)90039-O · Zbl 0825.73706 · doi:10.1016/0045-7949(91)90039-O
[25] DOI: 10.1002/nme.1620360107 · Zbl 0825.76436 · doi:10.1002/nme.1620360107
[26] Szabo B. A., Finite Element Analysis (1991)
[27] DOI: 10.1016/S0045-7825(00)00273-5 · Zbl 0976.65102 · doi:10.1016/S0045-7825(00)00273-5
[28] DOI: 10.1002/nme.1620110105 · Zbl 0364.65087 · doi:10.1002/nme.1620110105
[29] DOI: 10.1002/(SICI)1097-0207(19970330)40:6<1091::AID-NME102>3.0.CO;2-X · Zbl 0896.73065 · doi:10.1002/(SICI)1097-0207(19970330)40:6<1091::AID-NME102>3.0.CO;2-X
[30] DOI: 10.1002/nme.1620362202 · Zbl 0795.73067 · doi:10.1002/nme.1620362202
[31] Strang G., Variational Crimes in the Finite Element Method, Annals of Mathematics Study, vol. 33 (1954) · Zbl 0264.65068
[32] Bazeley, G. P., Cheung, Y. K., Irons, B. M. and Zienkiewics, O. C. Triangular Elements in Plate Bending-Conforming and Non-Conforming Solutions (Stiffness Characteristics of Triangular Plate Elements in Bending, and Solutions). Conference on Matrix Methods in Structural Mechanics, Air Force Institute of Technology. Wright–Patterson, Ohio: Air Force Institute of Technology.
[33] DOI: 10.1007/BF00364252 · Zbl 0764.65068 · doi:10.1007/BF00364252
[34] DOI: 10.1002/nme.1620370205 · Zbl 0796.73077 · doi:10.1002/nme.1620370205
[35] DOI: 10.1002/nme.1620372006 · Zbl 0814.76061 · doi:10.1002/nme.1620372006
[36] Peano A. G., PhD thesis, in: Hierarchies of conforming Finite Elements (1975)
[37] DOI: 10.1016/0045-7949(84)90047-6 · Zbl 0552.73061 · doi:10.1016/0045-7949(84)90047-6
[38] Overhauser A., Analytic Definilion of Curves and Surfaces by Parabolic Blending (1968)
[39] DOI: 10.1002/nme.358 · Zbl 1012.74070 · doi:10.1002/nme.358
[40] DOI: 10.1002/(SICI)1097-0207(19971215)40:23<4405::AID-NME267>3.0.CO;2-K · Zbl 0891.73060 · doi:10.1002/(SICI)1097-0207(19971215)40:23<4405::AID-NME267>3.0.CO;2-K
[41] DOI: 10.1002/nme.1620030409 · Zbl 0248.73029 · doi:10.1002/nme.1620030409
[42] DOI: 10.1142/S1465876301000507 · doi:10.1142/S1465876301000507
[43] DOI: 10.1002/nme.324 · doi:10.1002/nme.324
[44] DOI: 10.1002/nme.328 · doi:10.1002/nme.328
[45] Nayak H. V., Ph.D. Dissertation, in: Solutions of Class C 00 C 11 of Two Dimensional Newtonian and Polymer Flows (2001)
[46] DOI: 10.1142/S1465876300000173 · doi:10.1142/S1465876300000173
[47] Ahmadi, A., Surana, K. S. and Reddy, J. N. Higher Order Global Differentiability Approximations for 2D Distorted Element Geometries. 7th World Congress on Computational Mechanics. July16–22, Los Angeles, CA.
[48] Reddy J. N., An introduction to the Finite Element Method (1993)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.