×

Inductor shape optimization for electromagnetic casting. (English) Zbl 1274.74220

Summary: The design of inductors in electromagnetic shaping of molten metals consists in looking for the position and the shape of a set of electric wires such that the induced electromagnetic field makes a given mass of liquid metal acquire a predefined shape. In this paper we formulate an inverse optimization problem where the position and shape of the inductors are defined by a set of design variables. In a first formulation of the inverse optimization problem we minimize the difference between the target and the equilibrium shapes while in a second approach we minimize the \(L^2\) norm of a fictitious surface pressure that makes the target shape to be in mechanical equilibrium. Geometric constraints that prevent the inductors from penetrating the liquid metal are considered in both formulations. The optimization problems are solved using FAIPA, a line search interior-point algorithm for nonlinear optimization. Some examples are presented to show the effectiveness of the proposed approaches.

MSC:

74P05 Compliance or weight optimization in solid mechanics
76W05 Magnetohydrodynamics and electrohydrodynamics
35Q60 PDEs in connection with optics and electromagnetic theory
74F15 Electromagnetic effects in solid mechanics
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Achtziger W (2007) On simultaneous optimization of truss geometry and topology. Struct Multidiscipl Optim 33(4–5):285–304 · Zbl 1245.90112 · doi:10.1007/s00158-006-0092-0
[2] Allaire G (2007) Conception optimale de structures, mathématiques and applications, vol 58. Springer, Berlin
[3] Arora JS, Wang Q (2004) Optimization of large-scale structural systems using sparse SAND formulations. Tech. rep., Optimal Design Lab/CCAD, College of Engineering/4110 SC, The University of Iowa, Iowa City, IA 52242
[4] Arora JS, Wang Q (2005) Review of formulations for structural and mechanical system optimization. Struct Multidiscipl Optim 30(4):251–272 · Zbl 1243.74002 · doi:10.1007/s00158-004-0509-6
[5] Brancher JP, Séro-Guillaume OE (1985) Étude de la déformation d’un liquide magnétique. Arch Ration Mech Anal 90(1):57–85 · Zbl 0577.76105 · doi:10.1007/BF00281587
[6] Canelas A, Herskovits J, Telles JCF (2007) Shape optimization using the boundary element method and a SAND interior point algorithm for constrained optimization. Comput Struct 86(13–14):1517–1526 · doi:10.1016/j.compstruc.2007.05.008
[7] Canelas A, Roche JR, Herskovits J (2008) The inverse electromagnetic shaping problem. Struct Multidiscipl Optim. doi: 10.1007/s00158-008-0285-9 · Zbl 1274.35408
[8] Choi KK, Kim NH (2004) Structural sensitivity analysis and optimization 1 and 2. Springer, Berlin Heidelberg New York
[9] Coulaud O, Henrot A (1994) Numerical approximation of a free boundary problem arising in electromagnetic shaping. SIAM J Numer Anal 31(4):1109–1127 · Zbl 0804.65129 · doi:10.1137/0731058
[10] Felici TP, Brancher JP (1991) The inverse shaping problem. Eur J Mech B Fluids 10(5):501–512 · Zbl 0741.76092
[11] Fu HZ, Shen J, Liu L, Hao QT, Li SM, Li JS (2004) Electromagnetic shaping and solidification control of Ni-base superalloys under vacuum. J Mater Process Technol 148(1):25–29 · doi:10.1016/j.jmatprotec.2003.11.039
[12] Gagnoud A, Etay J, Garnier M (1986) Le problème de frontière libre en lévitation électromagnétique. J Méc Théor Appl 5(6):911–934 · Zbl 0615.76111
[13] Haftka RT (1985) Simultaneous analysis and design. AIAA J 23(7):1099–1103 · Zbl 0587.73135 · doi:10.2514/3.9043
[14] Haftka RT, Kamat MP (1989) Simultaneous nonlinear structural analysis and design. Comput Mech 4(6):409–416 · Zbl 0692.73064 · doi:10.1007/BF00293046
[15] Henrot A, Pierre M (1989) Un probléme inverse en formage de métaux liquides. Modél Math Anal Numér 23(1):155–177 · Zbl 0672.65101
[16] Henrot A, Brancher JP, Pierre M (1989) Existence of equilibria in electromagnetic casting. In: Proceedings of the fifth international symposium on numerical methods in engineering. Comput Mech, vol 1, 2 (Lausanne, 1989). Southampton, pp 221–228
[17] Herskovits J (1998) Feasible direction interior-point technique for nonlinear optimization. J Optim Theory Appl 99(1):121–146 · Zbl 0911.90303 · doi:10.1023/A:1021752227797
[18] Herskovits J, Laporte E, Le Tallec P, Santos G (1996) A quasi-Newton interior point algorithm applied to constrained optimum design in computational fluid dynamics. Rev Européenne Élém Finis 5(5–6):595–617 · Zbl 0924.76071
[19] Herskovits J, Mappa P, Goulart E, Mota Soares CM (2005) Mathematical programming models and algorithms for engineering design optimization. Comput Methods Appl Mech Eng 194(30–33):3244–3268 · Zbl 1092.74035 · doi:10.1016/j.cma.2004.12.017
[20] Kress R (1999) Linear integral equations, applied mathematical sciences, vol 82, 2nd edn. Springer, New York · Zbl 0920.45001
[21] Moffatt HK (1985) Magnetostatic equilibria and analogous Euler flows of arbitrarily complex topology I Fundamentals. J Fluid Mech 159:359–378 · Zbl 0616.76121 · doi:10.1017/S0022112085003251
[22] Murat S, Simon J (1976) Sur le contrôle par un domaine géométrique. Tech rep 76015, Laboratoire d’Analyse Numérique, Université de Paris
[23] Nédélec JC (1977) Approximation des équations intégrales en mécanique et en physique. Tech rep, Centre de mathématiques appliquées, Ecole Polytechnique
[24] Novruzi A (1997) Contribution en optimization de formes et applications. PhD thesis, Université Henri Poincaré, Nancy 1
[25] Novruzi A, Pierre M (2002) Structure of shape derivatives. J Evol Equ 2(3):365–382 · Zbl 1357.49150 · doi:10.1007/s00028-002-8093-y
[26] Novruzi A, Roche JR (1995) Second order derivatives, Newton method, application to shape optimization. Tech. Rep. RR-2555, INRIA
[27] Novruzi A, Roche JR (2000) Newton’s method in shape optimisation: a three-dimensional case. BIT 40(1):102–120 · Zbl 0956.65054 · doi:10.1023/A:1022370419231
[28] Pierre M, Roche JR (1991) Computation of free surfaces in the electromagnetic shaping of liquid metals by optimization algorithms. Eur J Mech B Fluids 10(5):489–500 · Zbl 0741.76095
[29] Pierre M, Roche JR (1993) Numerical simulation of tridimensional electromagnetic shaping of liquid metals. Numer Math 65(2):203–217 · Zbl 0792.65096 · doi:10.1007/BF01385748
[30] Pierre M, Rouy E (1996) A tridimensional inverse shaping problem. Comm Partial Differ Equ 21(7–8):1279–1305 · Zbl 0881.35125 · doi:10.1080/03605309608821226
[31] Roche JR (1996) Algorithmes numériques en optimization de formes et électromagnétisme, mémoire d’Habilitation à Diriger des Recherches
[32] Roche JR (1997) Gradient of the discretized energy method and discretized continuous gradient in electromagnetic shaping simulation. Appl Math Comput Sci 7(3):545–565 · Zbl 0902.49016
[33] Séro-Guillaume OE, Zouaoui D, Bernardin D, Brancher JP (1992) The shape of a magnetic liquid drop. J Fluid Mech 241:215–232 · Zbl 0755.76098 · doi:10.1017/S0022112092002015
[34] Shercliff JA (1981) Magnetic shaping of molten metal columns. Proc R Soc Lond A 375:455–473 · doi:10.1098/rspa.1981.0063
[35] Simon J (1980) Differentiation with respect to the domain in boundary value problems. Numer Funct Anal Optim 2(7–8):649–687 · Zbl 0471.35077 · doi:10.1080/01630563.1980.10120631
[36] Sneyd AD, Moffatt HK (1982) Fluid dynamical aspects of the levitation-melting process. J Fluid Mech 117:45–70 · Zbl 0494.76111 · doi:10.1017/S0022112082001517
[37] Sullivan CR (1999) Optimal choice for number of strands in a Litz-wire transformer winding. IEEE Trans Power Electron 14(2):283–291 · doi:10.1109/63.750181
[38] Yi SI, Shin JK, Park GJ (2008) Comparison of MDO methods with mathematical examples. Struct Multidiscipl Optim 35(5):391–402 · doi:10.1007/s00158-007-0150-2
[39] Zhiqiang C, Fei J, Xingguo Z, Hai H, Junze J (2002) Microstructures and mechanical characteristics of electromagnetic casting and direct-chill casting 2024 aluminum alloys. Mater Sci Eng A 327(2):133–137 · doi:10.1016/S0921-5093(01)01673-2
[40] Zouaoui D, Séro-Guillaume OE, Brancher JP (1990) Equilibrium of a magnetic liquid drop: variational approach and computation. Magn Gidrodin 26(4):32–35, 150
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.