×

Computational strategies for reliability-based structural optimization of aeroelastic limit cycle oscillations. (English) Zbl 1274.74248

Summary: Gradient-based optimization, via the adjoint method, is needed to realistically enable the reliability-based design of a nonlinear unsteady aeroelastic system with many random and/or deterministic design variables. The adjoint derivatives of a time-marched system entail a cumbersome reverse-time integration, and so a time-periodic spectral element scheme is used here to efficiently capture the gradients of the limit cycle oscillations. Further reductions in the computational cost of the monolithic-time adjoint vector are obtained with proper orthogonal decomposition, which projects the large system onto a reduced basis. Design reliability is computed with the first order reliability method, which provides an estimate of the failure probability without resorting to sampling-based approaches (infeasible for large systems). Analytical gradients are needed to obtain the most probable point (in the random variable space), as well as the reliability design derivatives. These computational strategies are utilized to locate the optimal thickness distribution of a cantilevered wing operating beyond its flutter point in supersonic flow (via piston theory). Specifically, the wing mass is minimized under both deterministic and non-deterministic limit cycle oscillation amplitude constraints, with both structural and flow uncertainties considered in the latter.

MSC:

74P05 Compliance or weight optimization in solid mechanics
90B25 Reliability, availability, maintenance, inspection in operations research
34C05 Topological structure of integral curves, singular points, limit cycles of ordinary differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Allen M, Maute K (2004) Reliability-based design optimization of aeroelastic structures. Struct Multidiscipl Optim 27(4):228–242 · doi:10.1007/s00158-004-0384-1
[2] Allen M, Maute K (2005) Reliability-based shape optimization of structures undergoing fluid-structure interaction phenomena. Comput Methods Appl Mech Eng 194(30):3472–3495 · Zbl 1100.74046 · doi:10.1016/j.cma.2004.12.028
[3] Ashley H, Zartarian G (1956) Piston theory–a new aerodynamic tool for the aeroelastician. J Aeronaut Sci 23(12):1109–1118 · doi:10.2514/8.3740
[4] Attar P, Dowell E (2006) Stochastic analysis of a nonlinear aeroelastic model using the response surface method. J Aircr 43(4):1044–1052 · doi:10.2514/1.17525
[5] Barboni R, Mannini A, Gaudenzi P (1999) On the use of the P-TFE mthod for panel flutter optimization. Comput Struct 70(1):109–117 · Zbl 0963.74554 · doi:10.1016/S0045-7949(98)00180-1
[6] Beran P, Lucia D (2005) A reduced order cyclic method for computation of limit cycles. Nonlinear Dyn 39(1):143–158 · Zbl 1095.76043 · doi:10.1007/s11071-005-1921-1
[7] Beran P, Pettit C, Millman D (2006) Uncertainty quantification of limit cycle oscillations. J Comput Phys 217(1):217–247 · Zbl 1147.76552 · doi:10.1016/j.jcp.2006.03.038
[8] Beran P, Stanford B, Kurdi M (2010) Sensitivity analysis for optimization of dynamic systems with reduced order modeling. In: AIAA aerospace sciences meeting and exhibit, Orlando, FL, 4–7 January
[9] Bisplinghoff R, Ashley H, Halfman R (1955) Aeroelasticity. Addison-Wesley, Cambridge
[10] Butler R (1998) The optimisation of wing structures–theory or practice? Aircr Eng Aerosp Technol 70(4):4–8 · doi:10.1108/00022669810196000
[11] Chung J, Hulbert G (1993) A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-{\(\alpha\)} method. J Appl Mech 60:371–375 · Zbl 0775.73337 · doi:10.1115/1.2900803
[12] Cook R, Malkus D, Plesha M, Witt R (2002) Concepts and applications of finite element analysis. Wiley, New York
[13] Dowell E (1966) Nonlinear oscillations of a fluttering plate. AIAA J 4(7):1267–1275 · doi:10.2514/3.3658
[14] Dowell E, Edwards J, Strganac T (2003) Nonlinear aeroelasticity. J Aircr 40(5):857–874 · doi:10.2514/2.6876
[15] Dunn P, Dugundji (1992) Nonlinear stall and divergence analysis of cantilevered graphite/epoxy wing. AIAA J 30(1):153–162 · Zbl 0800.73292 · doi:10.2514/3.10895
[16] Eldred M, Bichon, B (2006) Second-order reliability formulations in DAKOTA/UQ. In: AIAA structures, structural dynamics, and materials conference, Newport, RI, 1–4 May
[17] Ghommem M, Hajj M, Nayfeh A (2010) Uncertainty analysis near bifurcation of an aeroelastic system. J Sound Vib 329(16):3335–3347 · Zbl 1191.74013 · doi:10.1016/j.jsv.2010.02.028
[18] Janardhan S, Grandhi R, Eastep F, Sanders B (2003) Design studies of transonic flutter and limit-cycle oscillation of an aircraft wing/tip store. In: AIAA structures, structural dynamics, and materials conference, Norfolk, VA, 7–10 April
[19] Jung H, Cho S (2004) Reliability-based topology optimization of geometrically nonlinear structures with loading and material uncertainties. Finite Elem Anal Des 41(3):311–331 · doi:10.1016/j.finel.2004.06.002
[20] Kameyama M, Fukunaga H (2007) Optimum design of composite plate wings for aeroelastic characteristics using lamination parameters. Comput Struct 85(3):213–224 · doi:10.1016/j.compstruc.2006.08.051
[21] Kang B, Park G, Arora J (2006) A review of optimization of structures subjected to transient loads. Struct Multidiscipl Optim 31(2): 81–95 · Zbl 1245.74057 · doi:10.1007/s00158-005-0575-4
[22] Kerschen G, Golinval J, Vakakis A, Bergman L (2005) The method of proper orthogonal decomposition for dynamical characterization and order reduction of mechanical systems: an overview. Nonlinear Dyn 41:147–169 · Zbl 1103.70011 · doi:10.1007/s11071-005-2803-2
[23] Kim T, Hong M, Bhatia K, SenGupta G (2005) Aeroelastic model reduction for affordable computational fluid dynamics-based flutter analysis. AIAA J 43(12):2487–2495 · doi:10.2514/1.11246
[24] Kreisselmeier G, Steinhauser R (1979) Systematic control design by optimizing a vector performance index. In: IFAC symposium on computer aided design of control systems, Zurich, Switzerland, pp 113–117
[25] Krysl P, Lall S, Marsden J (2001) Dimensional model reduction in nonlinear finite element dynamics of solids and structures. Int J Numer Methods Eng 51(4):479–504 · Zbl 1013.74071 · doi:10.1002/nme.167
[26] Kurdi M, Beran P (2008) Spectral element method in time for rapidly actuated systems. J Comput Phys 227(3):1809–1835 · Zbl 1134.65071 · doi:10.1016/j.jcp.2007.09.031
[27] Lieu T, Farhat C, Lesoinne M (2006) Reduced-order fluid/structure modeling of a complete aircraft configuration. Comput Methods Appl Mech Eng 195(41):5730–5742 · Zbl 1124.76042 · doi:10.1016/j.cma.2005.08.026
[28] Lindsley N, Beran P, Pettit C (2006) Integration of model reduction and probabilistic techniques with deterministic multi-physics models. In: AIAA aerospace sciences meeting and exhibit, Reno, NV, 9–12 January
[29] Lucia D, Beran P, Silva W (2004) Reduced-order modeling: new approaches for computational physics. Prog Aerosp Sci 40(1): 51–117 · doi:10.1016/j.paerosci.2003.12.001
[30] Mani K, Mavriplis D (2009) Adjoint-based sensitivity formulation for fully coupled unsteady aeroelasticity problems. AIAA J 47(8):1902–1915 · doi:10.2514/1.40582
[31] Maute K, Frangopol D (2003) Reliability-based design of mems mechanisms by topology optimization. Comput Struct 81(13): 813–824 · doi:10.1016/S0045-7949(03)00008-7
[32] Meitour J, Lucor D, Chassaing J (2010) Prediction of stochastic limit cycle oscillations using an adaptive polynomial chaos method. J Aeroel Struct Dyn 2(1):3–22
[33] Melchers R (1987) Structural reliability: analysis and prediction. Wiley, Chichester
[34] Meyer M, Matthies H (2003) Efficient model reduction in non-linear dynamics using the Karhunen–Loève expansion and dual-weighted-residual methods. Comput Mech 31(1):179–191 · Zbl 1038.74559 · doi:10.1007/s00466-002-0404-1
[35] Missoum S, Dribusch C, Beran P (2010) Reliability-based design optimization of nonlinear aeroelasticity problems. J Aircr 47(3):992–998 · doi:10.2514/1.46665
[36] Nikbay M, Fakkusoglu N, Kuru M (2010) Reliability-based aeroelastic optimization of a composite aircraft wing via fluid-structure interaction of high fidelity solvers. Mater Sci Eng 10(1): 1–10
[37] Odaka Y, Furuya H (2005) Robust structural optimization of plate wing corresponding to bifurcation in higher mode flutter. Struct Multidiscipl Optim 30(6)
[38] Palaniappan K, Beran P, Jameson A (2006) Optimal control of LCOs in aero-structural systems. In: AIAA structures, structural dynamics, and materials conference, Newport, RI, 1–4 May
[39] Pettit C, Grandhi R (2003) Optimization of a wing structure for gust response and aileron effectiveness. J Aircr 40(6):1185–1191
[40] Pozrikidis C (2005) Introduction to finite and spectral element methods using Matlab. CRC, Boca Raton · Zbl 1078.65109
[41] Romanowski M (1996) Reduced-order unsteady aerodynamic and aeroelastic models using Karhunen–Loève eigenmodes. AIAA Paper 1996–3981
[42] Sirisup S, Karniadakis G (2004) A spectral viscosity method for correcting the long-term behavior of POD Models. J Comput Phys 194:92–116 · Zbl 1136.76412 · doi:10.1016/j.jcp.2003.08.021
[43] Stanford B, Beran P, Kurdi M (2010) Adjoint sensitivities of time-periodic nonlinear structural dynamics via model reduction. Comput Struct 88(19):1110–1123 · doi:10.1016/j.compstruc.2010.06.012
[44] Svanberg K (1987) The method of moving asymptotes–a new method for structural optimization. Int J Numer Methods Eng 24(2): 359–373 · Zbl 0602.73091 · doi:10.1002/nme.1620240207
[45] Thomas J, Dowell E, Hall K (2004) Modeling viscous transonic limit-cycle oscillation behavior using a harmonic balance approach. J Aircr 41(6):1266–1274 · doi:10.2514/1.9839
[46] Thomas J, Hall K, Dowell E (2005) Discrete adjoint approach for modeling unsteady aerodynamic design sensitivities. AIAA J 43(9):1931–1936 · doi:10.2514/1.731
[47] Thomas J, Dowell E, Hall K, Denegri C (2006) An investigation of the sensitivity of F-16 fighter flutter onset and limit cycle oscillations to uncertainties. In: AIAA structures, structural dynamics, and materials conference, Newport, RI, 1–4 May
[48] Thomas J, Dowell A, Hall K (2010) Using automatic differentiation to create a nonlinear reduced-order-model aerodynamic solver. AIAA J 48(1):19–24 · doi:10.2514/1.36414
[49] Wang Q, Moin P, Iaccarino G (2009) Minimal repetition dynamic checkpointing algorithm for unsteady adjoint calculation. SIAM J Sci Comput 31(4):2549–2567 · Zbl 1196.65050 · doi:10.1137/080727890
[50] Xue D, Mei C (1993) Finite element nonlinear panel flutter with arbitrary temperatures in supersonic flow. AIAA J 31(1):154–162 · Zbl 0779.73075 · doi:10.2514/3.11332
[51] Zienkiewicz O (1972) The finite element method. McGraw Hill, New York · Zbl 0367.73078
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.