×

Large time behavior of solutions to semilinear parabolic equations with gradient. (English) Zbl 1334.35149

Summary: In this paper, we investigate the large time behavior of solutions to the Cauchy problem of a class of semilinear parabolic equations with gradient. The blowing-up theorem of Fujita type is established, and the critical Fujita exponent is formulated by the spacial dimension and the behavior of the coefficient of the gradient term at \(\infty\). It is a surprise that the critical Fujita exponent even could be 1 or infinite due to the effect of the gradient term. The critical case is also considered. An interesting phenomenon is that the critical Fujita exponent can belong to not only the blowing-up case but also the global existence case for each nontrivial solution.

MSC:

35K58 Semilinear parabolic equations
35K15 Initial value problems for second-order parabolic equations
35B40 Asymptotic behavior of solutions to PDEs
35B33 Critical exponents in context of PDEs
35B44 Blow-up in context of PDEs
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Aguirre J, Escobedo M. On the blow-up of solutions of a convective reaction diffusion equation. Proc Roy Soc Edinburgh Sect A 1993;123(3):433-460. · Zbl 0801.35038 · doi:10.1017/S0308210500025828
[2] Deng K, Levine H A. The role of critical exponents in blow-up theorems: the sequel. J Math Anal Appl 2000;243(1):85-126. · Zbl 0942.35025 · doi:10.1006/jmaa.1999.6663
[3] Friedman A. Partial differential equations of parabolic type: Pentice-Hall, Inc.; 1964. · Zbl 0144.34903
[4] Fujita H. On the blowing up of solutions of the Cauchy problem for ∂u∂t=Δu+u1+α \(\frac{\partial u}{\partial t} = {\Delta } u + u^{1+\alpha } \). J Fac Sci Univ Tokyo Sect I 1966;13:109-124. · Zbl 0163.34002
[5] Hayakawa K. On nonexistence of global solutions of some semilinear parabolic equations. Proc Japan Acad 1973;49:503-525. · Zbl 0281.35039 · doi:10.3792/pja/1195519254
[6] Kobayashi K, Siaro T, Tanaka H. On the blowing up problem for semilinear heat equations. J Math Soc Japan 1977;29:407-424. · Zbl 0353.35057 · doi:10.2969/jmsj/02930407
[7] Levine H A. The role of critical exponents in blow-up theorems. SIAM Rev 1990; 32(2):262-288. · Zbl 0706.35008 · doi:10.1137/1032046
[8] Meier P. On the critical exponent for reaction-diffusion equations. Arch Rational Mech Anal 1990;109(1):63-71. · Zbl 0702.35132 · doi:10.1007/BF00377979
[9] Pao CV. Nonlinear parabolic and elliptic equations. New York and London: Plenum Press; 1992. · Zbl 0777.35001
[10] Qi YW. The critical exponents of parabolic equations and blow-up in ℝn \(\mathbb R^n\). Proc Roy Soc Edinburgh Sect A 1998;128(1):123-136. · Zbl 0892.35088 · doi:10.1017/S0308210500027190
[11] Suzuki R. Existence and nonexistence of global solutions to quasilinear parabolic equations with convection. Hokkaido Math J 1998;27(1):147-196. · Zbl 0895.35056 · doi:10.14492/hokmj/1351001256
[12] Wang CP, Zheng SN. Critical Fujita exponents of degenerate and singular parabolic equations. Proc Roy Soc Edinburgh Sect A 2006;136(2):415-430. · Zbl 1104.35015 · doi:10.1017/S0308210500004637
[13] Wang CP, Zheng SN, Wang ZJ. Critical Fujita exponents for a class of quasilinear equations with homogeneous Neumann boundary data. Nonlinearity 2007;20 (6):1343-1359. · Zbl 1173.35345 · doi:10.1088/0951-7715/20/6/002
[14] Zheng SN, Wang CP. Large time behaviour of solutions to a class of quasilinear parabolic equations with convection terms. Nonlinearity 2008;21(9):2179-2200. · Zbl 1149.35325 · doi:10.1088/0951-7715/21/9/015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.