×

Computing symmetry groups of polyhedra. (English) Zbl 1351.52009

Summary: Knowing the symmetries of a polyhedron can be very useful for the analysis of its structure as well as for practical polyhedral computations. In this note, we study symmetry groups preserving the linear, projective and combinatorial structure of a polyhedron. In each case we give algorithmic methods to compute the corresponding group and discuss some practical experiences. For practical purposes the linear symmetry group is the most important, as its computation can be directly translated into a graph automorphism problem. We indicate how to compute integral subgroups of the linear symmetry group that are used, for instance, in integer linear programming.

MSC:

52B11 \(n\)-dimensional polytopes
20B25 Finite automorphism groups of algebraic, geometric, or combinatorial structures
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] DOI: 10.1016/S0010-4655(03)00491-0 · Zbl 1196.14007 · doi:10.1016/S0010-4655(03)00491-0
[2] DOI: 10.1016/S0747-7171(08)80103-4 · Zbl 0807.20001 · doi:10.1016/S0747-7171(08)80103-4
[3] DOI: 10.1007/s002200050100 · Zbl 0894.14026 · doi:10.1007/s002200050100
[4] DOI: 10.1007/978-1-4613-8431-1 · Zbl 0823.52002 · doi:10.1007/978-1-4613-8431-1
[5] DOI: 10.1007/978-3-319-00200-2_15 · Zbl 1273.90127 · doi:10.1007/978-3-319-00200-2_15
[6] Schürmann, Computational geometry of positive definite quadratic forms (2009)
[7] Schrijver, Combinatorial optimization. Polyhedra and efficiency, vol. A, B, C (2003) · Zbl 1041.90001
[8] Puget, Automatic detection of variable and value symmetries (2005) · Zbl 1153.68477 · doi:10.1007/11564751_36
[9] DOI: 10.1006/jsco.1996.0130 · Zbl 0882.11042 · doi:10.1006/jsco.1996.0130
[10] DOI: 10.1007/978-1-4612-0333-9 · doi:10.1007/978-1-4612-0333-9
[11] DOI: 10.1016/0097-3165(88)90064-7 · Zbl 0673.05087 · doi:10.1016/0097-3165(88)90064-7
[12] Isaacs, Finite group theory (2008) · Zbl 1169.20001 · doi:10.1090/gsm/092
[13] DOI: 10.1007/s10801-006-6924-6 · Zbl 1260.90136 · doi:10.1007/s10801-006-6924-6
[14] Isaacs, Character theory of finite groups (1994) · Zbl 0849.20004
[15] DOI: 10.1007/978-3-642-79459-9_16 · doi:10.1007/978-3-642-79459-9_16
[16] Cox, Toric varieties (2011) · doi:10.1090/gsm/124
[17] DOI: 10.4153/CMB-2009-040-7 · Zbl 1181.52020 · doi:10.4153/CMB-2009-040-7
[18] DOI: 10.1007/s00454-008-9121-7 · Zbl 1163.52004 · doi:10.1007/s00454-008-9121-7
[19] Coxeter, Projective geometry (1987)
[20] DOI: 10.1090/S0025-5718-09-02224-8 · Zbl 1215.11067 · doi:10.1090/S0025-5718-09-02224-8
[21] Bremner, CRM Proc. Lecture Notes 48 pp 45– (2009) · doi:10.1090/crmp/048/03
[22] DOI: 10.1090/S1079-6762-07-00171-0 · Zbl 1186.11039 · doi:10.1090/S1079-6762-07-00171-0
[23] DOI: 10.1007/BF02760511 · Zbl 0546.52004 · doi:10.1007/BF02760511
[24] DOI: 10.1007/s10107-011-0487-6 · Zbl 1262.90101 · doi:10.1007/s10107-011-0487-6
[25] DOI: 10.1007/BF01830678 · Zbl 0634.52005 · doi:10.1007/BF01830678
[26] DOI: 10.1007/s00454-004-1140-4 · Zbl 1109.52009 · doi:10.1007/s00454-004-1140-4
[27] Margot, 50 years of integer programming pp 647– (2010)
[28] DOI: 10.1007/s10107-010-0351-0 · Zbl 1235.90103 · doi:10.1007/s10107-010-0351-0
[29] DOI: 10.1080/0308108031000053648 · Zbl 1026.15002 · doi:10.1080/0308108031000053648
[30] Leon, Groups and computation, II (New Brunswick, NJ, 1995) pp 123– (1997) · doi:10.1090/dimacs/028/10
[31] Kreuzer, Adv. Theor. Math. Phys. 2–4 pp 853– (1998) · Zbl 0934.52006 · doi:10.4310/ATMP.1998.v2.n4.a5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.