×

Development of an asymptotic modeling methodology for tibio-femoral contact in multibody dynamic simulations of the human knee joint. (English) Zbl 1271.74313

Summary: A new methodology for modeling articular tibio-femoral contact based on the recently developed asymptotic model of frictionless elliptical contact interaction between thin biphasic cartilage layers is presented. The developed mathematical model of articular contact is extended to the case of contact between arbitrary viscoelastic incompressible coating layers. The approach requires use of the smooth contact surface geometry and efficient contact points detection methods. A generalization of the influence surface theory based method for representing articular surfaces from the unstructured noisy surface data is proposed. The normal contact forces are determined analytically based on the exact solution for elliptical contact between thin cartilage layers modeled as viscoelastic incompressible layers. The effective geometrical characteristics of articular surfaces are introduced for use in the developed asymptotic models of elliptical contact between articular surfaces.

MSC:

74L15 Biomechanical solid mechanics
74M15 Contact in solid mechanics
92C10 Biomechanics
70E18 Motion of a rigid body in contact with a solid surface
45K05 Integro-partial differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Eberhard, P., Spägele, T., Gollhofer, A.: Investigations for the dynamical analysis of human motion. Multibody Syst. Dyn. 3, 1–20 (1999) · Zbl 0944.92003 · doi:10.1023/A:1009880222265
[2] Kłodowski, A., Rantalainen, T., Mikkola, A., Heinonen, A., Sievänen, H.: Flexible multibody approach in forward dynamic simulation of locomotive strains in human skeleton with flexible lower body bones. Multibody Syst. Dyn. 25, 395–409 (2011) · Zbl 1284.74083 · doi:10.1007/s11044-010-9240-9
[3] Herzog, W., Federico, S.: Considerations on joint and articular cartilage mechanics. Biomech. Model. Mechanobiol. 5, 64–81 (2006) · doi:10.1007/s10237-006-0029-y
[4] Wismans, J., Veldpaus, F., Janssen, J., Huson, A., Struben, P.: A three-dimensional mathematical model of the knee-joint. J. Biomech. 13, 677–679 (1980) 681–685 · doi:10.1016/0021-9290(80)90354-1
[5] Abdel-Rahman, E.M., Hefzy, M.S.: Three-dimensional dynamic behaviour of the human knee joint under impact loading. Med. Eng. Phys. 20, 276–290 (1998) · doi:10.1016/S1350-4533(98)00010-1
[6] Ling, Z.-K., Guo, H.-Q., Boersma, S.: Analytical study on the kinematic and dynamic behaviors of a knee joint. Med. Eng. Phys. 19, 29–36 (1997) · doi:10.1016/S1350-4533(96)00031-8
[7] Blankevoort, L., Kuiper, J.H., Huiskes, R., Grootenboer, H.J.: Articular contact in a three-dimensional model of the knee. J. Biomech. 24, 1019–1031 (1991) · doi:10.1016/0021-9290(91)90019-J
[8] Bei, Y., Fregly, B.J.: Multibody dynamic simulation of knee contact mechanics. Med. Eng. Phys. 26, 777–789 (2004) · doi:10.1016/j.medengphy.2004.07.004
[9] Machado, M., Flores, P., Claro, J.C.P., Ambrósio, J., Silva, M., Completo, A., Lankarani, H.M.: Development of a planar multibody model of the human knee joint. Nonlinear Dyn. 60, 459–478 (2010) · Zbl 1189.92008 · doi:10.1007/s11071-009-9608-7
[10] Barber, J.R.: Contact problems for the thin elastic layer. Int. J. Mech. Sci. 32, 129–132 (1990) · Zbl 0712.73084 · doi:10.1016/0020-7403(90)90112-V
[11] Ateshian, G.A., Lai, W.M., Zhu, W.B., Mow, V.C.: An asymptotic solution for the contact of two biphasic cartilage layers. J. Biomech. 27, 1347–1360 (1994) · doi:10.1016/0021-9290(94)90044-2
[12] Wilson, W., van Donkelaar, C.C., van Rietberger, R., Huiskes, R.: The role of computational models in the search for the mechanical behaviour and damage mechanisms of articular cartilage. Med. Eng. Phys. 27, 810–826 (2005) · doi:10.1016/j.medengphy.2005.03.004
[13] Wu, J.Z., Herzog, W., Epstein, M.: Evaluation of the finite element software ABAQUS for biomechanical modelling of biphasic tissues. J. Biomech. 31, 165–169 (1997) · doi:10.1016/S0021-9290(97)00117-6
[14] Caruntu, D.I., Hefzy, M.S.: 3-D anatomically based dynamic modeling of the human knee to include tibio-femoral and patello-femoral joints. J. Biomech. Eng. 126, 44–53 (2004) · doi:10.1115/1.1644565
[15] Pérez-González, A., Fenollosa-Esteve, C., Sancho-Bru, J.L., Sánchez-Marín, F.T., Vergara, M., Rodríguez-Cervantes, P.J.: A modified elastic foundation contact model for application in 3D models of the prosthetic knee. Med. Eng. Phys. 30, 387–398 (2008) · doi:10.1016/j.medengphy.2007.04.001
[16] Lin, Y.-Ch., Haftka, R.T., Queipo, N.V., Fregly, B.J.: Surrogate articular contact models for computationally efficient multibody dynamic simulations. Med. Eng. Phys. 32, 584–594 (2010) · doi:10.1016/j.medengphy.2010.02.008
[17] Argatov, I., Mishuris, G.: Elliptical contact of thin biphasic cartilage layers: exact solution for monotonic loading. J. Biomech. 44, 759–761 (2011) · Zbl 1248.74026 · doi:10.1016/j.jbiomech.2010.11.010
[18] Argatov, I., Mishuris, G.: Frictionless elliptical contact of thin viscoelastic layers bonded to rigid substrates. Appl. Math. Model. 35, 3201–3212 (2011) · Zbl 1221.74057 · doi:10.1016/j.apm.2011.01.029
[19] Wang, J.H.-C., Ryu, J., Han, J.-S., Rowen, B.: A new method for the representation of articular surfaces using the influence surface theory of plates. J. Biomech. 33, 629–633 (2000) · doi:10.1016/S0021-9290(99)00203-1
[20] Huiskes, R., Van Dijk, R., de Lange, A., Woltring, H.J., Van Rens, Th.J.G.: Kinematics of the human knee joint. In: Berme, N., Engin, A.E., Correia da Silva, K.M. (eds.) Biomechanics of Normal and Pathological Human Articulating Joints, pp. 165–187. Martinus Nijhoff, Dordrecht (1985)
[21] Glocker, Ch.: Formulation of spatial contact situations in rigid multibody systems. Comput. Methods Appl. Math. 177, 199–214 (1999) · Zbl 0952.70007
[22] Aleksandrov, V.M., Vorovich, I.I.: Contact problems for the elastic layer of small thickness. J. Appl. Math. Mech. 28, 425–427 (1964) · doi:10.1016/0021-8928(64)90174-1
[23] Johnson, K.L.: Contact Mechanics. Cambridge Univ. Press, Cambridge (1985) · Zbl 0599.73108
[24] Pandy, M.G., Sasaki, K., Kim, S.: A three-dimensional musculoskeletal model of the human knee joint. Part 1: theoretical construction. Comput. Methods Biomech. Biomed. Eng. 1, 87–108 (1997) · doi:10.1080/01495739708936697
[25] Argatov, I.I.: The pressure of a punch in the form of an elliptic paraboloid on a thin elastic layer. Acta Mech. 180, 221–232 (2005) · Zbl 1082.74035 · doi:10.1007/s00707-005-0217-3
[26] Chadwick, R.S.: Axisymmetric indentation of a thin incompressible elastic layer. SIAM J. Appl. Math. 62, 1520–1530 (2002) · Zbl 1080.74039 · doi:10.1137/S0036139901388222
[27] Wu, J.Z., Herzog, W., Epstein, M.: An improved solution for the contact of two biphasic cartilage layers. J. Biomech. 30, 371–375 (1997) · doi:10.1016/S0021-9290(96)00148-0
[28] Li, G., Sakamoto, M., Chao, E.Y.S.: A comparison of different methods in predicting static pressure distribution in articulating joints. J. Biomech. 30, 635–638 (1997) · doi:10.1016/S0021-9290(97)00009-2
[29] Kücük, H.: The effect of modeling cartilage on predicted ligament and contact forces at the knee. Comput. Biol. Med. 36, 363–375 (2006) · Zbl 05326935 · doi:10.1016/j.compbiomed.2004.10.003
[30] Abdel-Rahman, E.M., Hefzy, M.S.: A two-dimensional dynamic anatomical model of the human knee joint. J. Biomech. Eng. 115, 357–365 (1993) · doi:10.1115/1.2895498
[31] Hohe, J., Ateshian, G., Reiser, M., Englmeier, K.-H., Eckstein, F.: Surface size, curvature analysis, and assessment of knee joint incongruity with MRI in vivo. Magn. Reson. Med. 47, 554–561 (2002) · doi:10.1002/mrm.10097
[32] Koo, S., Andriacchi, T.P.: A comparison of the influence of global functional loads vs. local contact anatomy on articular cartilage thickness at the knee. J. Biomech. 40, 2961–2966 (2007) · doi:10.1016/j.jbiomech.2007.02.005
[33] Argatov, I., Mishuris, G.: Contact problem for thin biphasic cartilage layers: perturbation solution. Q. J. Mech. Appl. Math. 64, 297–318 (2011) · Zbl 1248.74026 · doi:10.1093/qjmam/hbr008
[34] Ateshian, G.A.: A B-spline least-squares surface fitting method for articular surfaces of diarthrodial joints. J. Biomech. Eng. 115, 366–373 (1993) · doi:10.1115/1.2895499
[35] Dhaher, Y.Y., Delp, S.L., Rymer, W.Z.: The use of basis functions in modelling joint articular surfaces: application to the knee joint. J. Biomech. 33, 901–907 (2000) · doi:10.1016/S0021-9290(00)00024-5
[36] van Ruijven, L.J., Beek, M., van Eijden, T.M.G.J.: Fitting parametrized polynomials with scattered surface data. J. Biomech. 32, 715–720 (1999) · doi:10.1016/S0021-9290(99)00055-X
[37] Hirokawa, S., Ueki, T., Ohtsuki, A.: A new approach for surface fitting method of articular joint surfaces. J. Biomech. 37, 1551–1559 (2004) · doi:10.1016/j.jbiomech.2004.01.009
[38] Gilardi, G., Sharf, I.: Literature survey of contact dynamics modelling. Mech. Mach. Theory 37, 1213–1239 (2002) · Zbl 1062.70553 · doi:10.1016/S0094-114X(02)00045-9
[39] Hunt, K.H., Crossley, F.R.E.: Coefficient of restitution interpreted as damping in vibroimpact. J. Appl. Mech. 42, 440–445 (1975) · doi:10.1115/1.3423596
[40] Flores, P., Ambrósio, J.: On the contact detection for contact-impact analysis in multibody systems. Multibody Syst. Dyn. 24, 103–122 (2010) · Zbl 1375.70021 · doi:10.1007/s11044-010-9209-8
[41] Flores, P., Machado, M., Silva, M.T., Martins, J.M.: On the continuous contact force models for soft materials in multibody dynamics. Multibody Syst. Dyn. 25, 357–375 (2011) · Zbl 1263.70007 · doi:10.1007/s11044-010-9237-4
[42] Monteiro, N.M.B., da Silva, M.P.T., Folgado, J.O.M.G., Melancia, J.P.L.: Structural analysis of the intervertebral discs adjacent to an interbody fusion using multibody dynamics and finite element cosimulation. Multibody Syst. Dyn. 25, 245–270 (2011) · doi:10.1007/s11044-010-9226-7
[43] Silva, M.P.T., Ambrósio, J.A.C., Pereira, M.S.: Biomechanical model with joint resistance for impact simulation. Multibody Syst. Dyn. 1, 65–84 (1997) · Zbl 0885.92002 · doi:10.1023/A:1009700405340
[44] Guess, T.M., Thiagarajan, G., Kia, M., Mishra, M.: A subject specific multibody model of the knee with menisci. Med. Eng. Phys. 32, 505–515 (2010) · doi:10.1016/j.medengphy.2010.02.020
[45] Argatov, I.I.: Asymptotic modeling of the impact of a spherical indenter on an elastic half-space. Int. J. Solids Struct. 45, 5035–5048 (2008) · Zbl 1169.74515 · doi:10.1016/j.ijsolstr.2008.05.003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.