×

Nonlinear supratransmission in fractional wave systems. (English) Zbl 1414.92243

Summary: In this work, we review various nonlinear systems with fractional derivatives of the Riesz type in space. Concretely, we consider partial differential equations with fractional Laplacians, which consider potentials of the Fermi-Pasta-Ulam, sine-Gordon, Klein-Gordon and double sine-Gordon. These regimes have the important feature that some energy functional is available in the fractional scenario. For each of these cases, we propose numerical techniques to approximate their solutions, and some discrete functionals are provided in order to approximate the energy dynamics of the systems. The methodologies are energy-preserving (conservative) techniques which are employed then to investigate the presence of nonlinear supratransmission in those systems. It is well known that such process is present in continuous Fermi-Pasta-Ulam, sine-Gordon, Klein-Gordon and double sine-Gordon regimes when the derivatives are of integer order. As one of the most important outcomes of this survey, the computer simulations confirm that this process is also present when the derivatives are of fractional order.

MSC:

92E99 Chemistry
35R11 Fractional partial differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] M. Abbaszade, M. Mohebbi, Fourth-order numerical solution of a fractional PDE with the nonlinear source term in the electroanalytical chemistry. Iran. J. Math. Chem. 3(2), 195-220 (2012) · Zbl 1293.65111
[2] G. Alfimov, T. Pierantozzi, L. Vázquez, Numerical study of a fractional sine-Gordon equation. Fract. Differ. Appl. FDA 4, 153-162 (2004) · Zbl 1099.35520
[3] O. Belhamiti, B. Absar, A numerical study of fractional order reverse osmosis desalination model using legendre wavelet approximation. Iran. J. Math. Chem. 8(4), 345-364 (2017) · Zbl 1442.92212
[4] F.P. Benetti, A.C. Ribeiro-Teixeira, R. Pakter, Y. Levin, Nonequilibrium stationary states of 3D self-gravitating systems. Phys. Rev. Lett. 113(10), 100,602 (2014)
[5] G.N.C. Beukam, J.P. Nguenang, A. Trombettoni, T. Dauxois, R. Khomeriki, S. Ruffo, Fermi-pasta-ulam chains with harmonic and anharmonic long-range interactions. Commun. Nonlinear Sci. Numer. Simul. 60(1), 115-127 (2018) · Zbl 1470.82018
[6] A.R. Bishop et al., Nonlinear Evolution Equations And Dynamical Systems Needs’ 94 (World Scientific, New York, 1995)
[7] B. Bodo, S. Morfu, P. Marquié, M. Rosse, A Klein-Gordon electronic network exhibiting the supratransmission effect. Electron. Lett. 46(2), 123 (2010)
[8] A. Campa, T. Dauxois, S. Ruffo, Statistical mechanics and dynamics of solvable models with long-range interactions. Phys. Rep. 480(3), 57-159 (2009)
[9] J.G. Caputo, J. Leon, A. Spire, Nonlinear energy transmission in the gap. Phys. Lett. A 283(1), 129-135 (2001)
[10] D. Chevriaux, R. Khomeriki, J. Leon, Theory of a Josephson junction parallel array detector sensitive to very weak signals. Phys. Rev. B 73(21), 214,516 (2006)
[11] H. Christodoulidi, T. Bountis, C. Tsallis, L. Drossos, Dynamics and statistics of the Fermi-Pasta-Ulam \[\beta\] β-model with different ranges of particle interactions. J. Stat. Mech. Theory Exp. 2016(12), 123,206 (2016)
[12] H. Christodoulidi, C. Tsallis, T. Bountis, Fermi-Pasta-Ulam model with long-range interactions: dynamics and thermostatistics. EPL (Europhys. Lett.) 108(4), 40,006 (2014)
[13] A. Coronel-Escamilla, J. Gómez-Aguilar, E. Alvarado-Méndez, G. Guerrero-Ramírez, R. Escobar-Jiménez, Fractional dynamics of charged particles in magnetic fields. Int. J. Mod. Phys. C 27(08), 1650,084 (2016)
[14] Diethelm, K.; Freed, AD; Keil, F. (ed.); Mackens, W. (ed.); Voss, H. (ed.); Werther, J. (ed.), On the solution of nonlinear fractional-order differential equations used in the modeling of viscoplasticity, 217-224 (1999), Berlin
[15] A.L. Fabian, R. Kohl, A. Biswas, Perturbation of topological solitons due to sine-Gordon equation and its type. Commun. Nonlinear Sci. Numer. Simul. 14(4), 1227-1244 (2009) · Zbl 1221.37121
[16] E. Fermi, J. Pasta, S. Ulam, Studies of nonlinear problems. Los Alamos Report LA-1940, vol 978 (1955) · Zbl 0353.70028
[17] A. Friedman, Foundations of Modern Analysis (Courier Corporation, New York, 1970) · Zbl 0198.07601
[18] F. Geniet, J. Leon, Energy transmission in the forbidden band gap of a nonlinear chain. Phys. Rev. Lett. 89(13), 134,102 (2002)
[19] F. Geniet, J. Leon, Nonlinear supratransmission. J. Phys. Condens. Matter 15(17), 2933 (2003) · Zbl 1082.74025
[20] R. Ishiwata, Y. Sugiyama, Relationships between power-law long-range interactions and fractional mechanics. Phys. A Stat. Mech. Appl. 391(23), 5827-5838 (2012)
[21] R. Khomeriki, Nonlinear band gap transmission in optical waveguide arrays. Phys. Rev. Lett. 92(6), 063,905 (2004)
[22] R. Khomeriki, J. Leon, Bistability in the sine-Gordon equation: the ideal switch. Phys. Rev. E 71(5), 056,620 (2005)
[23] R. Khomeriki, S. Lepri, S. Ruffo, Nonlinear supratransmission and bistability in the Fermi-Pasta-Ulam model. Phys. Rev. E 70(6), 066,626 (2004)
[24] N. Laskin, Fractional Schrödinger equation. Phys. Rev. E 66(5), 056,108 (2002)
[25] I. Latella, A. Pérez-Madrid, A. Campa, L. Casetti, S. Ruffo, Long-range interacting systems in the unconstrained ensemble. Phys. Rev. E 95(1), 012,140 (2017)
[26] J. Leon, A. Spire, Gap soliton formation by nonlinear supratransmission in Bragg media. Phys. Lett. A 327(5), 474-480 (2004)
[27] P.S. Lomdahl, O.H. Soerensen, P.L. Christiansen, Soliton excitations in Josephson tunnel junctions. Phys. Rev. B 25(9), 5737 (1982)
[28] J.E. Macías-Díaz, A computational technique with multiple properties of consistency in the study of modified \[\beta\] β-Fermi-Pasta-Ulam chains. Commun. Nonlinear Sci. Numer. Simul. 15(7), 1740-1753 (2010) · Zbl 1222.37080
[29] J.E. Macías-Díaz, Numerical study of the process of nonlinear supratransmission in Riesz space-fractional sine-Gordon equations. Commun. Nonlinear Sci. Numer. Simul. 46, 89-102 (2017) · Zbl 1485.35400
[30] J.E. Macías-Díaz, Persistence of nonlinear hysteresis in fractional models of Josephson transmission lines. Commun. Nonlinear Sci. Numer. Simul. 53, 31-43 (2017) · Zbl 1510.94055
[31] J.E. Macías-Díaz, An explicit dissipation-preserving method for Riesz space-fractional nonlinear wave equations in multiple dimensions. Commun. Nonlinear Sci. Numer. Simul. 59, 67-87 (2018) · Zbl 1510.65200
[32] J.E. Macías-Díaz, Computational study of the nonlinear bistability in a relativistic wave equation with anomalous diffusion. Int. J. Mod. Phys. C 29, 1850054 (2018)
[33] J.E. Macías-Díaz, Numerical simulation of the nonlinear dynamics of harmonically driven Riesz-fractional extensions of the Fermi-Pasta-Ulam chains. Commun. Nonlinear Sci. Numer. Simul. 55, 248-264 (2018) · Zbl 1510.82018
[34] J.E. Macías-Díaz, A.S. Hendy, R.H. de Staelen, A pseudo energy-invariant method forrelativistic wave equations with Riesz space-fractional derivatives. Comput. Phys. Commun. 224, 98-107 (2017)
[35] J.E. Macías-Díaz, I.E. Medina-Ramírez, Nonlinear supratransmission and nonlinear bistability in a forced linear array of anharmonic oscillators: a computational study. Int. J. Mod. Phys. C 20(12), 1911-1923 (2009) · Zbl 1185.82040
[36] J.E. Macías-Díaz, A. Puri, An energy-based computational method in the analysis of the transmission of energy in a chain of coupled oscillators. J. Comput. Appl. Math. 214(2), 393-405 (2008) · Zbl 1135.65342
[37] J.E. Macías-Díaz, A. Puri, On the transmission of binary bits in discrete Josephson-junction arrays. Phys. Lett. A 372(30), 5004-5010 (2008) · Zbl 1221.60056
[38] J.E. Macías-Díaz, J. Ruiz-Ramírez, L.A. Flores-Oropeza, Computational study of the transmission of energy in a two-dimensional lattice with nearest-neighbor interactions. Int. J. Mod. Phys. C 20(12), 1933-1943 (2009) · Zbl 1200.82041
[39] A. Miele, J. Dekker, Long-range chromosomal interactions and gene regulation. Mol. Biosyst. 4(11), 1046-1057 (2008)
[40] G. Miloshevich, J.P. Nguenang, T. Dauxois, R. Khomeriki, S. Ruffo, Traveling solitons in long-range oscillator chains. J. Phys. A Math. Theor. 50(12), 12LT02 (2017) · Zbl 1367.34041
[41] S. Morfu, B. Bodo,P. Marquié, M. Rossé, Supratransmission dans une ligneélectrique de Klein-Gordon, in Rencontre du Non linéaire, ISBN 978-2-9538596-6-9, pp. 61-66. Non linéaire publications BP12 78801 st etienne du Rouvray Cedex (2017)
[42] A.T. Motcheyo, J.T. Tchameu, S. Fewo, C. Tchawoua, T. Kofane, Chameleons behavior of modulable nonlinear electrical transmission line. Commun. Nonlinear Sci. Numer. Simul. 53, 22-30 (2017) · Zbl 1510.78010
[43] A.T. Motcheyo, J.T. Tchameu, M.S. Siewe, C. Tchawoua, Homoclinic nonlinear band gap transmission threshold in discrete optical waveguide arrays. Commun. Nonlinear Sci. Numer. Simul. 50, 29-34 (2017)
[44] A.T. Motcheyo, C. Tchawoua, M.S. Siewe, J.T. Tchameu, Supratransmission phenomenon in a discrete electrical lattice with nonlinear dispersion. Commun. Nonlinear Sci. Numer. Simul. 18(4), 946-952 (2013)
[45] K.B. Oldham, Fractional differential equations in electrochemistry. Adv. Eng. Softw. 41(1), 9-12 (2010) · Zbl 1177.78041
[46] M. Remoissenet, Waves Called Solitons: Concepts and Experiments, 1st edn. (Springer, New York, 2013) · Zbl 0795.35100
[47] H. Susanto, Boundary driven waveguide arrays: supratransmission and saddle-node bifurcation. SIAM J. Appl. Math. 69(1), 111-125 (2008) · Zbl 1172.34028
[48] H. Susanto, N. Karjanto, Calculated threshold of supratransmission phenomena in waveguide arrays with saturable nonlinearity. J. Nonlinear Opt. Phys. Mater. 17(02), 159-165 (2008)
[49] V.E. Tarasov, Continuous limit of discrete systems with long-range interaction. J. Phys. A Math. Gen. 39(48), 14,895 (2006)
[50] V.E. Tarasov, E.C. Aifantis, Non-standard extensions of gradient elasticity: fractional non-locality, memory and fractality. Commun. Nonlinear Sci. Numer. Simul. 22(1), 197-227 (2015) · Zbl 1398.35280
[51] V.E. Tarasov, G.M. Zaslavsky, Fractional dynamics of systems with long-range interaction. Commun. Nonlinear Sci. Numer. Simul. 11(8), 885-898 (2006) · Zbl 1106.35103
[52] V.E. Tarasov, G.M. Zaslavsky, Conservation laws and hamiltons equations for systems with long-range interaction and memory. Commun. Nonlinear Sci. Numer. Simul. 13(9), 1860-1878 (2008) · Zbl 1221.70024
[53] J.T. Tchameu, C. Tchawoua, A.T. Motcheyo, Nonlinear supratransmission of multibreathers in discrete nonlinear Schrödinger equation with saturable nonlinearities. Wave Motion 65, 112-118 (2016) · Zbl 1467.35302
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.