×

Fuzzy adaptive compensation control for uncertain building structural systems by sliding-mode technology. (English) Zbl 1407.93210

Summary: Earthquake is a kind of natural disaster, which will have a great impact on the building structure. In the vibration control field of building structures, the timeliness of system stability is extremely important. In traditional control methods, the timeliness is not paid enough attention for systems with uncertain seismic waves. For setting this problem, fuzzy adaptive compensation control for uncertain building structural systems by sliding-mode technology is proposed. It is combined with fuzzy adaptive control and sliding-mode control to ensure that the system can be stable with satisfied timeliness. Also, saturation function is used to ensure the feasible physical implementation of the control system. Compared with the traditional LQR (linear quadratic regulator) control, the simulation results showed that the proposed method can make the system reach a stable state with rapid convergence performance and has a feasible physical implementation.

MSC:

93C42 Fuzzy control/observation systems
93C40 Adaptive control/observation systems
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Yang, C.; Wang, X.; Li, Z.; Li, Y.; Su, C. Y., Teleoperation control based on combination of wave variable and neural networks, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 47, 8, 2125-2136 (2017) · doi:10.1109/tsmc.2016.2615061
[2] Wang, J.; Liu, Z.; Chen, C. L. P.; Zhang, Y., Fuzzy adaptive compensation control of uncertain stochastic nonlinear systems with actuator failures and input hysteresis, IEEE Transactions on Cybernetics, 1-12 (2017) · doi:10.1109/TCYB.2017.2758025
[3] Lu, X. L., Seismic Theory of Complex High-Rise Buildings with Application (2015), Beijing: Science Press, Beijing
[4] Wang, F.; Chen, B.; Sun, Y.; Lin, C., Finite time control of switched stochastic nonlinear systems, Fuzzy Sets and Systems (2018) · doi:10.1016/j.fss.2018.04.016
[5] Zhang, C.; Lu, X.; Li, J.; Lu, W.; Zhou, Y., The research of the seismic performance of a multi-tower structure, Structural Engineers, 1, 123-127 (2011)
[6] Li, Y. S.; Xiao, C. Z.; Jin, L. F.; Zhang, C., Displacement analysis and control study on support of high-rise structures connected with high corridor, China Civil Engineering Journal, 12, 1-8 (2013)
[7] Wang, J.; Wang, Q.; Ma, K., Non-smooth controller design for permanent magnet synchronous motors, Computer Simulation, 33, 3, 227-230 (2016)
[8] Safdie, M., Case study: Marina Bay sands, Singapore, CTBUH Journal, 1, 13-17 (2011)
[9] Yong, T.; Chen, S. S.; Tu, Q. Y., Approaches to structural vibration control for civil engineering, Construction & Design for Project, 8, 1007-9467 (2011)
[10] Zhou, Y.; Hu, C. C.; Zhou, G. X.; Lu, W. S.; Lu, X. L.; Chen, P., Study on shake table model design method affliction pendulum isolated structures, Structural Engineers, 31, 6-11 (2015)
[11] Dai, S.-L.; Wang, M.; Wang, C., Neural learning control of marine surface vessels with guaranteed transient tracking performance, IEEE Transactions on Industrial Electronics, 63, 3, 1717-1727 (2016) · doi:10.1109/TIE.2015.2504553
[12] Wang, S. L.; Liu, W.; Yang, T., Experimental study on vibration control of Xiaoyan Pagoda in Xi’an, Journal of Vibration and Shock, 16, 1000-3835 (2017)
[13] Wang, F.; Zhang, X. Y., Adaptive finite time control of nonlinear systems under time-varying actuator failures, IEEE Transactions on Systems, Man, and Cybernetics: Systems (2018)
[14] Yang, C.; Wang, X.; Cheng, L.; Ma, H., Neural-learning-based telerobot control with guaranteed performance, IEEE Transactions on Cybernetics, 47, 10, 3148-3159 (2017) · doi:10.1109/tcyb.2016.2573837
[15] He, C.; Zhang, J.; Zhao, Q.; Huang, Q.; Yang, Z.; Zhang, D.; Yan, G., An electrical-coupling-suppressing MEMS gyroscope with feed-forward coupling compensation and scalable fuzzy control, Science China Information Sciences, 60, 4, 180-190 (2017) · doi:10.1007/s11432-015-0931-8
[16] Liu, F. C.; Liang, L. H.; Gao, J. J., Fuzzy PID control of space manipulator for both ground alignment and space applications, International Journal of Automation and Computing, 11, 4, 353-360 (2014) · doi:10.1007/s11633-014-0800-y
[17] Song, Q.; Dong, X.; Bai, Z.; Chen, B., Existence for fractional Dirichlet boundary value problem under barrier strip conditions, Journal of Nonlinear Sciences and Applications, 10, 7, 3592-3598 (2017) · Zbl 1412.34042 · doi:10.22436/jnsa.010.07.19
[18] Chen, M.; Chen, W. H.; Wu, Q. X., Adaptive fuzzy tracking control for a class of uncertain MIMO nonlinear systems using disturbance observer, Science China Information Sciences, 57, 1, 1-13 (2014) · Zbl 1331.93126 · doi:10.1007/s11432-012-4695-3
[19] Yousef, H. A.; Hamdy, M., Observer-based adaptive fuzzy control for a class of nonlinear time-delay systems, International Journal of Automation and Computing, 10, 4, 275-280 (2013) · doi:10.1007/s11633-013-0721-1
[20] Wang, J.; Liu, Z.; Chen, C. L. P.; Zhang, Y., Event-triggered fuzzy adaptive compensation control for uncertain stochastic nonlinear systems with given transient specification and actuator failures, Fuzzy Sets and Systems (2018) · doi:10.1016/j.fss.2018.04.013
[21] Dai, S. L.; He, S.; Lin, H.; Wang, C., Platoon formation control with prescribed performance guarantees for USVs, IEEE Transactions on Industrial Electronics, 65, 5, 4237-4246 (2018) · doi:10.1109/TIE.2017.2758743
[22] Wang, F.; Chen, B.; Lin, C.; Zhang, J.; Meng, X.; Wang, F.; Chen, B.; Lin, C.; Zhang, J.; Meng, X.; Chen, B.; Zhang, J.; Lin, C.; Wang, F.; Meng, X., Adaptive neural network finite-time output feedback control of quantized nonlinear systems, IEEE Transactions on Cybernetics, 48, 6, 1839-1848 (2018) · doi:10.1109/TCYB.2017.2715980
[23] Wang, J. M.; Liu, J. J.; Ren, B.; Chen, J., Sliding mode control to stabilization of cascaded heat PDE-ODE systems subject to boundary control matched disturbance, Automatica, 52, 23-34 (2015) · Zbl 1309.93124 · doi:10.1016/j.automatica.2014.10.117
[24] Li, Z. Q.; Wang, K., Chattering-free of sliding-mode control applied to structural vibration, Computer Engineering and Applications, 11, 229-232 (2017)
[25] Yao, J., Research on chattering elimination of sliding mode variable structure, Mechanical & Electrical Engineering Technology, 9, 1009-9492 (2016)
[26] Kong, Y., Isolation vibration reduction and vibration control analysis of building structures, Architectural Knowledge, 15, 1002-8544 (2017)
[27] Chen, Z.; Wen, G.; Zhou, H.; Chen, J., Generation of grid multi-scroll chaotic attractors via hyperbolic tangent function series, Optik-International Journal for Light and Electron Optics, 130, 594-600 (2017) · doi:10.1016/j.ijleo.2016.10.085
[28] Dai, S.-L.; Wang, C.; Wang, M., Dynamic learning from adaptive neural network control of a class of nonaffine nonlinear systems, IEEE Transactions on Neural Networks and Learning Systems, 25, 1, 111-123 (2014) · doi:10.1109/TNNLS.2013.2257843
[29] Yang, C.; Luo, J.; Pan, Y.; Liu, Z.; Su, C. Y., Personalized variable gain control with tremor attenuation for robot teleoperation, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 48, 10, 1759-1770 (2018) · doi:10.1109/TSMC.2017.2694020
[30] Li, X.; Lin, X.; Lin, Y., Lyapunov-type conditions and stochastic differential equations driven by G-Brownian motion, Journal of Mathematical Analysis and Applications, 439, 1, 235-255 (2016) · Zbl 1383.60048 · doi:10.1016/j.jmaa.2016.02.042
[31] Wang, J. M.; Cheng, H. D.; Li, Y.; Zhang, X. N., The geometrical analysis of a predator-prey model with multi-state dependent impulses, Journal of Applied Analysis and Computation, 8, 427-442 (2018) · Zbl 1460.34061
[32] Yang, C.; Li, Z.; Li, J., Trajectory planning and optimized adaptive control for a class of wheeled inverted pendulum vehicle models, IEEE Transactions on Cybernetics, 43, 1, 24-36 (2013) · doi:10.1109/TSMCB.2012.2198813
[33] Zhang, Y.; Dong, H.; Zhang, X.; Yang, H., Rational solutions and lump solutions to the generalized (3+1)-dimensional shallow water-like equation, Computers & Mathematics with Applications, 73, 2, 246-252 (2017) · Zbl 1368.35240 · doi:10.1016/j.camwa.2016.11.009
[34] Lv, W.; Wang, F., Adaptive tracking control for a class of uncertain nonlinear systems with infinite number of actuator failures using neural networks, Advances in Difference Equations, 2017, 374 (2017) · Zbl 1444.93014 · doi:10.1186/s13662-017-1426-5
[35] Cui, Y.; Ma, W.; Sun, Q.; Su, X., New uniqueness results for boundary value problem of fractional differential equation, Nonlinear Analysis: Modelling and Control, 23, 31-39 (2018) · Zbl 1420.34009 · doi:10.15388/NA.2018.1.3
[36] Bai, Z.; Zhang, S.; Sun, S.; Yin, C., Monotone iterative method for fractional differential equations, Electronic Journal of Differential Equations, 2016, 1-8 (2016)
[37] Wang, J.; Zhang, C.; Zhu, H.; Huang, X.; Zhang, L., RBF nonsmooth control method for vibration of building structure with actuator failure, Complexity, 2017 (2017) · Zbl 1380.93293 · doi:10.1155/2017/2513815
[38] Zhang, S.; Meng, X.; Feng, T.; Zhang, T., Dynamics analysis and numerical simulations of a stochastic non-autonomous predator-prey system with impulsive effects, Nonlinear Analysis: Hybrid Systems, 26, 19-37 (2017) · Zbl 1376.92057 · doi:10.1016/j.nahs.2017.04.003
[39] Dong, H.; Chen, T.; Chen, L.; Zhang, Y., A new integrable symplectic map and the lie point symmetry associated with nonlinear lattice equations, Journal of Nonlinear Sciences and Applications, 9, 7, 5107-5118 (2016) · Zbl 1405.35179 · doi:10.22436/jnsa.009.07.13
[40] Lv, W.; Wang, F.; Li, Y., Adaptive finite-time tracking control for nonlinear systems with unmodeled dynamics using neural networks, Advances in Difference Equations, 2018, 1 (2018) · Zbl 1446.93040 · doi:10.1186/s13662-018-1615-x
[41] Wang, Q.; Wang, J.; Huang, X.; Zhang, L., Semiactive nonsmooth control for building structure with deep learning, Complexity, 2017 (2017) · Zbl 1377.93068 · doi:10.1155/2017/6406179
[42] Wang, J.; Cheng, H.; Liu, H.; Wang, Y., Periodic solution and control optimization of a prey-predator model with two types of harvesting, Advances in Difference Equations, 2018, 1 (2018) · Zbl 1445.37070 · doi:10.1186/s13662-018-1499-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.