×

Detonation waves in a transverse magnetic field. (English) Zbl 1103.34032

The paper is concerned with the investigation of one-step exothermic chemical reaction occurring in the presence of magnetic and electrical fields. Under general assumptions of thermodynamics, the authors prove the existence of weak and strong detonation waves in a transverse magnetic field. In the rest of the paper, the stable and unstable manifolds of the resulting system, the existence, the uniqueness and nonuniqueness of weak and strong detonation waves are considered, too.

MSC:

34C60 Qualitative investigation and simulation of ordinary differential equation models
80A25 Combustion
34C37 Homoclinic and heteroclinic solutions to ordinary differential equations
PDFBibTeX XMLCite
Full Text: DOI Euclid

References:

[1] A. Aghajani and M. Hesaaraki, On the structure of ionizing shocks in magnetofluiddynamics, Internat. J. Math. Math. Sci. 29 (2002), 395–415. · Zbl 1016.76043
[2] H. Cabannes, Theoretical magnetofluiddynamics, Appl. Math. Mech., 13, Academic Press, New York, 1970.
[3] C. C. Conley and J. A. Smoller, On the structure of magnetohydrodynamic shock waves, Comm. Pure Appl. Math. 27 (1974), 367–375. · Zbl 0284.76080
[4] ——, On the structure of magnetohydrodynamic shock waves, Part II, J. Math. Pures Appl. (9) 54 (1975), 429–444. · Zbl 0292.76045
[5] Y. Farjami and M. Hesaaraki, Structure of shock waves in planar motion of plasma, Nonlinearity 11 (1998), 797–821. · Zbl 0908.76047
[6] W. Fickett and W. C. Davies, Detonation, Univ. of California Press, Berkeley, 1979.
[7] R. Gardner, On the detonation of a combustible gas, Trans. Amer. Math. Soc. 277 (1983), 431–464. · Zbl 0543.76152
[8] I. Gasser and P. Szmolyan, A geometric singular perturbation analysis of detonation and deflagration waves, SIAM J. Math. Anal. 24 (1993), 968–986. · Zbl 0783.76099
[9] P. Germain, Shock waves and shock-wave structure in magneto-fluid dynamics, Rev. Mod. Phys. 32 (1960), 951–958.
[10] ——, Shock waves, jump relations and structure, Adv. in Appl. Mech. 12 (1972), 131–193. · Zbl 0264.76055
[11] M. Hesaaraki, The structure of shock waves in magnetohydrodynamics, Mem. Amer. Math. Soc. 49 (302), 1984. · Zbl 0599.76053
[12] ——, The structure of shock waves in magnetohydrodynamics for purely transverse magnetic fields, SIAM J. Appl. Math. 51 (1991), 412–428. · Zbl 0850.76325
[13] ——, The structure of MFD shock waves in a model of two fluids, Nonlinearity 6 (1993), 1–24. · Zbl 0765.76044
[14] M. Hesaaraki and A. Razani, Detonative travelling waves for combustions, Appl. Anal. 77 (2001), 405–418. · Zbl 1022.80007
[15] ——, On the existence of Chapman–Jouguet detonation waves, Bull. Austral. Math. Soc. 63 (2001), 485–496. · Zbl 0986.34008
[16] M. A. Liberman and A. L. Velikovich, Physics of shock waves in gases and plasmas, Springer Ser. Electrophys., 19, Springer-Verlag, Berlin, 1986. · Zbl 0684.76077
[17] R. V. Polovin and V. P. Demutskii, Fundamentals of magnetohydrodynamics, Plenum, New York, 1990.
[18] A. Razani, Chapman–Jouguet detonation profile for a qualitative model, Bull. Austral. Math. Soc. 66 (2002), 393–403. · Zbl 1029.34023
[19] ——, Weak and strong detonation profiles for a qualitative model, J. Math. Anal. Appl. 276 (2002), 868–881. · Zbl 1106.76400
[20] ——, On the existence of premixed laminar flame, Bull. Austral. Math. Soc. 69 (2004), 415–427. · Zbl 1058.34057
[21] ——, Existence of Chapman–Jouguet detonation for a viscous combustion model, J. Math. Anal. Appl. 293 (2004), 551–563. · Zbl 1058.35165
[22] B. Rozhdestvenskii and N. Yanenko, System of quasi-linear equations, Transl. Math. Monogr., 55, Amer. Math. Soc., Providence, RI, 1983.
[23] J. A. Smoller, Shock waves and reaction–diffusion equations, Springer-Verlag, New York, 1994. · Zbl 0807.35002
[24] D. H. Wagner, The existence and behavior of viscous structure for plane detonation waves, SIAM J. Math. Anal. 20 (1989), 1035–1054. · Zbl 0675.76069
[25] F. A. Williams, Combustion theory, Benjamin/Cummings, Menlo Park, CA, 1985.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.