×

An efficient computational method for solving fractional biharmonic equation. (English) Zbl 1369.35106

Summary: In this paper, we first introduce the fractional biharmonic equation and an orthogonal system of basis functions for the space of continuous functions on the interval \([0,L]\), generated by the shifted Chebyshev polynomials. Moreover, we propose a computational method based on the operational matrix of fractional derivatives of these basis functions for solving the fractional biharmonic equation. The main characteristic behind this approach is that it reduces the problem under consideration to solving a system of algebraic equations which greatly simplifies the problem. Convergence of the shifted Chebyshev polynomials expansion in two-dimensions is investigated. Also the power of this manageable method is illustrated.

MSC:

35R11 Fractional partial differential equations
65N35 Spectral, collocation and related methods for boundary value problems involving PDEs
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Li, X.; Zhu, J.; Zhang, S., A meshless method based on boundary integral equations and radial basis functions for biharmonic-type problems, Appl. Math. Model., 35, 737-751 (2011) · Zbl 1205.65320
[2] Shi, Z.; yan Cao, Y.; jiang Chen, Q., Solving 2D and 3D Poisson equations and biharmonic equations by the Haar wavelet method, Appl. Math. Model., 36, 5143-5161 (2012) · Zbl 1254.65138
[3] Shi, Z.; Cao, Y. Y., A spectral collocation method based on Haar wavelets for Poisson equations and biharmonic equations, Math. Comput. Modelling, 24, 2858-2868 (2011) · Zbl 1235.65160
[4] Gumerov, N. A.; Duraiswami, R., Fast multipole method for the biharmonic equation in three dimensions, J. Comput. Phys., 215, 363-383 (2006) · Zbl 1103.65122
[5] Khattar, D.; Singh, S.; Mohanty, R., A new coupled approach high accuracy numerical method for the solution of 3D non-linear biharmonic equations, Appl. Math. Comput., 215, 3036-3044 (2009) · Zbl 1180.65137
[6] Li, Z.-C.; Lee, M.-G.; Chiang, J. Y.; Liu, Y. P., The Trefftz method using fundamental solutions for biharmonic equations, J. Comput. Appl. Math., 235, 4350-4367 (2011) · Zbl 1222.65131
[7] Jiang, S.; Ren, B.; Tsuji, P.; Ying, L., Second kind integral equations for the first kind Dirichlet problem of the biharmonic equation in three dimensions, J. Comput. Phys., 230, 7488-7501 (2011) · Zbl 1252.65196
[8] Shao, W.; Wua, X.; Chen, S., Chebyshev tau meshless method based on the integration-differentiation for biharmonic-type equations on irregular domain, Eng. Anal. Bound. Elem., 36, 1787-1798 (2012) · Zbl 1352.65575
[9] Dang, Q. A., Iterative method for solving the Neumann boundary value problem for biharmonic type equation, Comput. Math. Appl., 192, 2, 634-643 (2006) · Zbl 1101.65101
[10] Mai-Duy, N.; Tanner, R., A spectral collocation method based on integrated Chebyshev polynomials for two-dimensional biharmonic boundary-value problems, J. Comput. Appl. Math., 201, 30-47 (2007) · Zbl 1110.65112
[11] Li, X.; Zhu, J., A Galerkin boundary node method for biharmonic problems, Eng. Anal. Bound. Elem., 33, 6, 858-865 (2009) · Zbl 1244.65175
[12] Bialecki, B., A fast solver for the orthogonal spline collocation solution of the biharmonic Dirichlet problem on rectangles, J. Comput. Phys., 191, 2, 601-621 (2003) · Zbl 1032.65134
[13] Chen, Y.; Yi, M.; Yu, C., Error analysis for numerical solution of fractional differential equation by Haar wavelets method, J. Comput. Sci., 3, 5, 367-373 (2012)
[14] Chen, J., Analysis of stability and convergence of numerical approximation for the Riesz fractional reaction-dispersion equation, J. Xiamen Univ. (Nat. Sci.), 46, 5, 616-619 (2007) · Zbl 1164.65528
[15] Liu, F.; Anh, V.; Turner, I., Numerical solution of the space fractional Fokker-Planck equation, J. Comput. Appl. Math., 166, 1, 209-219 (2004) · Zbl 1036.82019
[16] Chen, S.; Liu, F., Finite difference approximations for the fractional Fokker-Planck equation, Appl. Math. Model., 33, 1, 256-273 (2009) · Zbl 1167.65419
[17] Chen, P.; Li, Y.; Chen, Q.; Feng, B., On the initial value problem of fractional evolution equations with noncompact semigroup, Comput. Math. Appl., 67, 1108-1115 (2014) · Zbl 1381.34011
[18] Chen, P.; Li, Y.; Li, Q., Existence of mild solutions for fractional evolution equations with nonlocal initial conditions, Ann. Polon. Math., 110, 13-24 (2014) · Zbl 1293.34009
[19] Chen, P.; Li, Y., Existence of mild solutions for fractional evolution equations with mixed monotone nonlocal conditions, Z. Angew. Math. Phys. (2013)
[20] Beibalaev, V. D.; Meilanov, R. P., The Dirichlet problem for the fractional Poisson’s equation with Caputo derivatives: a finite difference approximation and a numerical solution, Therm. Sci., 16, 2, 385-394 (2012)
[21] Chen, W.; Ye, L.; Sun, H., Fractional diffusion equations by the Kansa method, Comput. Math. Appl., 59, 1614-1620 (2010) · Zbl 1189.35356
[22] Sun, H. G.; Chen, W.; Li, C.; Chen, Y. Q., Finite difference schemes for variable-order time fractional diffusion equation, Int. J. Bifurcation Chaos, 22, 4, 1250085 (2012) · Zbl 1258.65079
[23] Fu, Z. J.; Chen, W.; Yang, H. T., Boundary particle method for Laplace transformed time fractional diffusion equations, J. Comput. Phys., 235, 52-66 (2013) · Zbl 1291.76256
[24] Podlubny, I., Fractional Differential Equations (1999), Academic Press: Academic Press San Diego · Zbl 0918.34010
[25] Li, Y.; Zhao, W., Haar wavelet operational matrix of fractional order integration and its applications in solving the fractional order differential equations, Appl. Math. Comput., 216, 2276-2285 (2010) · Zbl 1193.65114
[26] Rehman, M.; Kh, R. A., The Legendre wavelet method for solving fractional differential equations, Commun. Nonlinear Sci. Numer. Simul., 16, 11, 4163-4173 (2011) · Zbl 1222.65063
[27] Wang, Y.; Fan, Q., The second kind Chebyshev wavelet method for solving fractional differential equations, Appl. Math. Comput., 218, 8592-8601 (2012) · Zbl 1245.65090
[28] Li, Y., Solving a nonlinear fractional differential equation using Chebyshev wavelets, Commun. Nonlinear Sci. Numer. Simul., 15, 9, 2284-2292 (2009) · Zbl 1222.65087
[29] Heydari, M. H.; Hooshmandasl, M. R.; Ghaini, F. M.M.; Mohammadi, F., Wavelet collocation method for solving multi order fractional differential equations, J. Appl. Math., 2012, 19 (2012), Article ID 542401 · Zbl 1235.42034
[30] Heydari, M. H.; Hooshmandasl, M. R.; Ghaini, F. M.M.; Fereidouni, F., Two-dimensional Legendre wavelets for solving fractional Poisson equation with Dirichlet boundary conditions, Eng. Anal. Bound. Elem., 37, 1331-1338 (2013) · Zbl 1287.65113
[31] Heydari, M. H.; Hooshmandasl, M. R.; Mohammadi, F.; Cattani, C., Wavelets method for solving systems of nonlinear singular fractional Volterra integro-differential equations, Commun. Nonlinear Sci. Numer. Simul., 19, 1, 37-48 (2014) · Zbl 1344.65126
[32] Hooshmandasl, M. R.; Heydari, M. H.; Ghaini, F. M.M., Numerical solution of the one-dimensional heat equation by using Chebyshev wavelets method, Appl. Comput. Math., 1, 6, 1-7 (2012)
[33] Heydari, M. H.; Hooshmandasl, M. R.; Ghaini, F. M.M., A good approximate solution for Lienard equation in a large interval using block pulse functions, J. Math. Extension, 7, 1, 17-32 (2013) · Zbl 1312.65112
[34] Biazar, J.; Ebrahimi, H., Chebyshev wavelets approach for nonlinear systems of Volterra integral equations, Comput. Math. Appl., 63, 608-616 (2012) · Zbl 1238.65122
[35] Canuto, C.; Hussaini, M.; Quarteroni, A.; Zang, T., Spectral Methods in Fluid Dynamics (1988) · Zbl 0658.76001
[36] Doha, E. H.; Bhrawy, A. H.; Ezz-Eldien, S. S., Efficient Chebyshev spectral methods for solving multi-term fractional orders differential equations, Appl. Math. Model., 35, 5662-5672 (2011) · Zbl 1228.65126
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.