×

Complex Lie algebroids and Finsler manifold in time-dependent fractal dimension and their associated decomplexifications. (English) Zbl 1480.58008

Fractional calculus is a generalisation of classical calculus, where fractional or fractal powers of differentiation and integration operators are considered. This paper is concerned with fractional calculus of variations for Lie algebroids and Finsler manifolds. The aim is to generalize previous studies to the case of fractional variational problems, i.e. fractional actions where the fractional order of the derivative is allowed to be time dependent. The basic fractional Lagrangian concepts and the fractional formalism on Finsler manifolds are introduced. Starting from such formalism, one could construct several geometric objects such as connections, torsions and parallel curvatures on prolongations of complex Lie algebroids.

MSC:

58H05 Pseudogroups and differentiable groupoids
53D17 Poisson manifolds; Poisson groupoids and algebroids
20L05 Groupoids (i.e. small categories in which all morphisms are isomorphisms)
49S05 Variational principles of physics
22A22 Topological groupoids (including differentiable and Lie groupoids)
34A08 Fractional ordinary differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Agrawal, O., Formulation of Euler-Lagrange equations for fractional variational problems, J. Math. Anal. Appl., 272, 368-379 (2002) · Zbl 1070.49013
[2] Almeida, R.; Tavares, D.; Torres, D. F.M., The Variable-Order Fractional Calculus of Variations, Springer Briefs in Applied Sciences and Technology (2019), Springer: Springer Cham · Zbl 1402.49002
[3] Atanackovic, T. M.; Konjik, S.; Pilipovic, S., Variational problems with fractional derivatives: Euler-Lagrange equations, J. Phys. A, 41, Article 095201 pp. (2008) · Zbl 1175.49020
[4] Bateman, H., On dissipative systems and related variational principles, Phys. Rev., 38, 815 (1931) · Zbl 0003.01101
[5] Bernd, S., Complexification of proper Hamiltonian G-space, Ann. Sc. Norm. Super. Pisa, Cl. Sci., 30, 415-534 (2001) · Zbl 1072.32006
[6] Calcagni, G., Geometry of fractional spaces, Adv. Theor. Math. Phys., 16, 549-644 (2012) · Zbl 1268.28009
[7] Calcagni, G., Fractal universe and quantum gravity, Phys. Rev. Lett., 104, Article 251301 pp. (2010)
[8] Calcagni, G., ABC of multi-fractal spacetimes and fractional sea turtles, Eur. Phys. J. C, 76, 181 (2016)
[9] Cannas da Silva, A.; Weinstein, A., Geometric Models for Noncommutative Algebras, Berkeley Math. Lect. Notes, vol. 10 (1999), Amer. Math. Soc. · Zbl 1135.58300
[10] Choudhury, A. G.; Guha, P.; Khanra, B., On the Jacobi last multiplier, integrating factors and the Lagrangian formulation of the Painlevé-Gambier classification, J. Math. Anal. Appl., 360, 651-664 (2009) · Zbl 1183.34138
[11] Ciaglia, F. M.; Ibort, A.; Marmo, G., Schiwnger’s picture of quantum mechanics I: groupoids, Int. J. Geom. Methods Mod. Phys., 16, Article 1850199 pp. (2019) · Zbl 1421.81049
[12] Coimbra, C. M.; Soon, C. M.; Kobayashi, M. H., The variable viscoelasticity operator, Ann. Phys., 14, 378-389 (2005) · Zbl 1125.74316
[13] Cortes, J.; De Léon, M.; Marrero, J. C.; Martin De Diego, D.; Martinez, E., A survey of Lagrangian mechanics and control on Lie algebroids and groupoids, Int. J. Geom. Methods Mod. Phys., 03, 509-558 (2006) · Zbl 1136.70317
[14] Crainic, M.; Mestre, J. N., Measures on differentiable stacks, J. Noncommut. Geom., 13, 1235-1294 (2019) · Zbl 1439.58010
[15] Dahl, M., A brief introduction to Finsler geometry (2006), Helsinki University of Technology, thesis
[16] Deguchi, S.; Fujiwara, Y.; Nakano, K., Two quantization approaches to the Bateman oscillator model, Ann. Phys., 403, 34-46 (2019) · Zbl 1411.81123
[17] Deguchi, S.; Fujiwara, Y., Quantization of the damped harmonic oscillator based on a modified Bateman Lagrangian, Phys. Rev. A, 101, Article 022105 pp. (2020)
[18] El-Nabulsi, R. A.; Torres, D. F.M., Fractional action-like variational problems, J. Math. Phys., 49, Article 052521 pp. (2008) · Zbl 1152.81422
[19] El-Nabulsi, R. A., Complexified quantum field theory and “mass without mass” from multidimensional fractional actionlike variational approach with dynamical fractional exponents, Chaos Solitons Fractals, 42, 2384-2398 (2009)
[20] El-Nabulsi, R. A., Fractional Dirac operators and deformed field theory on Clifford algebra, Chaos Solitons Fractals, 42, 2614-2622 (2009) · Zbl 1198.81086
[21] El-Nabulsi, R. A., Fractional action-like variational problems in holonomic, non-holonomic and semi-holonomic constrained and dissipative dynamical systems, Chaos Solitons Fractals, 42, 52-61 (2009) · Zbl 1198.70010
[22] El-Nabulsi, R. A., Extended fractional calculus of variations, complexified geodesics and Wong’s fractional equations on complex plane and on Lie algebroids, Ann. Univ. Mariae Curie-Skłodowska, Sect. A, LXV, 49-67 (2011) · Zbl 1241.49029
[23] El-Nabulsi, R. A., A periodic functional approach to the calculus of variations and the problem of time-dependent damped harmonic oscillators, Appl. Math. Lett., 24, 1647-1653 (2011) · Zbl 1325.37036
[24] El-Nabulsi, R. A.; Wu, G.-c., Fractional complexified field theory from Saxena-Kumbhat fractional integral, fractional derivative of order \(( \alpha, \beta )\) and dynamical fractional integral exponent, Afr. Diaspora J. Math., 13, 45-61 (2012) · Zbl 1267.49037
[25] El-Nabulsi, R. A.; Jamil, M.; Wu, G.-c., Complexified Lie algebroids from a generalized Stieltjes action approach to the calculus of variations, Sarajevo J. Math., 8, 143-158 (2012) · Zbl 1255.49079
[26] El-Nabulsi, R. A., Fractional oscillators from non-standard Lagrangians and time-dependent fractional exponent, Comput. Appl. Math., 33, 163-179 (2014) · Zbl 1348.70076
[27] El-Nabulsi, R. A., Complexified quantum field theory and “mass without mass” from multidimensional fractional actionlike variational approach with time-dependent fractional exponents, Chaos Solitons Fractals, 42, 2384-2398 (2009)
[28] El-Nabulsi, R. A., Fractional variational symmetries of Lagrangians, the fractional Galilean transformation and the modified Schrödinger equation, Nonlinear Dyn., 81, 939-948 (2015) · Zbl 1347.26020
[29] El-Nabulsi, R. A., Fractional variational approach with non-standard power-law degenerate Lagrangians and a generalized derivative operator, Tbil. Math. J., 9, 279-293 (2016) · Zbl 1366.37128
[30] El-Nabulsi, R. A., Path integral formulation of fractionally perturbed Lagrangian oscillators on fractal, J. Stat. Phys., 172, 1617-1640 (2018) · Zbl 1401.83005
[31] Ferreira, R. A.C., Fractional calculus of variations: a novel way to look at it, Fract. Calc. Appl. Anal., 22, 1133-1144 (2019) · Zbl 1439.49045
[32] Geatti, L., A remark on the orbit structure of the complexification of a semisimple symmetric space, Differ. Geom. Appl., 30, 195-205 (2012) · Zbl 1270.22006
[33] Hawkins, E., A groupoid approach to quantization, J. Symplectic Geom., 6, 61-125 (2008) · Zbl 1154.46041
[34] Herrmann, R., Fractional Calculus: An Introduction for Physicists (2011), World Scientific: World Scientific Singapore · Zbl 1232.26006
[35] Hou, J.; Huan, D.; Zhao, H., The chaos model analysis based on time-varying fractal dimension, (Li, K.; Li, X.; Irwin, G. W.; He, G., Life System Modeling and Simulation. Life System Modeling and Simulation, LSMS 2007. Life System Modeling and Simulation. Life System Modeling and Simulation, LSMS 2007, Lecture Notes in Computer Science, vol. 4689 (2007), Springer: Springer Berlin, Heidelberg)
[36] Ionescu, A.; Munteanu, G., Connections on the total space of a holomorphic Lie algebroid, Mediterr. J. Math., 14, 163 (2017) · Zbl 1429.53093
[37] Ivan, G.; Ivan, M.; Opris, D., Fractional Euler-Lagrange and fractional Wang equations for Lie algebroids, (Proceedings of the 4-th International Colloquium of Mathematics in Engineering and Numerical Physics. Proceedings of the 4-th International Colloquium of Mathematics in Engineering and Numerical Physics, MENP-4, October 6-8, 2006, Bucharest, Romania. Proceedings of the 4-th International Colloquium of Mathematics in Engineering and Numerical Physics. Proceedings of the 4-th International Colloquium of Mathematics in Engineering and Numerical Physics, MENP-4, October 6-8, 2006, Bucharest, Romania, BSG Proceedings, vol. 14 (2006)), 73-80 · Zbl 1221.70022
[38] Karasev, M. V., Analogues of objects of the theory of Lie groups for nonlinear Poisson brackets, Izv. Akad. Nauk SSSR, Ser. Mat., 50, 508-538 (1986) · Zbl 0608.58023
[39] Kilbas, A. A.; Srivastava, H. H.; Trujillo, J. J., Theory and Applications of Fractional Differential Equations (2006), Elsevier: Elsevier The Netherlands · Zbl 1092.45003
[40] Kosyakov, B. P., The field of an arbitrarily moving color charge, Theor. Math. Phys., 87, 632-635 (1991)
[41] Landsman, K. P., Lie groupoids and Lie algebroids in physics and noncommutative geometry, J. Geom. Phys., 56, 24-54 (2006) · Zbl 1088.58009
[42] Li, S., Construction of Lie algebroids (2013), University of Toronto, PhD Thesis, Department of Mathematics
[43] Mackenzie, K., Lie Groupoids and Lie Algebroids in Differential Geometry (2010), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0683.53029
[44] Mackenzie, K., Lie algebroids and Lie pseudo-algebras, Bull. Lond. Math. Soc., 27, 97-147 (1995) · Zbl 0829.22001
[45] Malinowska, A. B.; Torres, D. F.M., Introduction to the Fractional Calculus of Variations (2012), Imperial College Press: Imperial College Press London · Zbl 1258.49001
[46] Martinez, E., Lagrangian mechanics on Lie algebroids, Acta Appl. Math., 67, 295-320 (2011) · Zbl 1002.70013
[47] Martinez, E., Lie algebroids in classical mechanics and optimal control, SIGMA, 3, Article 050 pp. (2007) · Zbl 1142.49023
[48] Molski, M.; Konarski, J., Tumor growth in the space-time with temporal fractal dimension, Chaos Solitons Fractals, 36, 811-818 (2008)
[49] Molski, M.; Konarski, J., Neuronal differentiation and synapse formation in the fractal space-time with temporal fractal dimension, Synapse, 60, 567 (2006)
[50] Molski, M., Biological growth in the fractal space-time with temporal fractal dimension, Chaotic Model. Simul., 1, 169-175 (2012)
[51] Munteanu, G., Gauge field theory in terms of complex Hamilton geometry, Balk. J. Geom. Appl., 12, 107-121 (2007) · Zbl 1136.53023
[52] Munteanu, G., Complex Spaces in Finsler, Lagrange and Hamiltonian Geometries, Fundamental Theories of Physics, vol. 141 (2012), Springer Science & Business Media
[53] Nistor, V., Groupoids and the integration of Lie algebroids, J. Math. Soc. Jpn., 52, 847-868 (2000) · Zbl 0965.58023
[54] Oldham, K. B.; Spanier, J., The Fractional Calculus (1974), Academic: Academic New York · Zbl 0428.26004
[55] Pais, A.; Uhlenbeck, G. E., On field theories with non-localized action, Phys. Rev., 79, 145 (1950) · Zbl 0040.13203
[56] Qi, F.; Guo, B.-N., Two new proofs of the complete monotonicity of a function involving the psi function, Bull. Korean Math. Soc., 47, 103-111 (2010) · Zbl 1183.33002
[57] Odzijewicz, T.; Malinowska, A. B.; Torres, D. F.M., Fractional calculus of variations in terms of a generalized fractional integral with applications to physics, Abstr. Appl. Anal., 2012, Article 871912 pp. (2012) · Zbl 1242.49019
[58] Rapaic, M. R.; Pisano, A., Variable-order fractional operators for adaptive order and parameter estimation, IEEE Trans. Autom. Control, 59, 798-803 (2014) · Zbl 1360.93190
[59] Riewe, F., Nonconservative Lagrangian and Hamiltonian mechanics, Phys. Rev. E, 53, 1890-1899 (1996)
[60] Riewe, F., Mechanics with fractional derivatives, Phys. Rev. E, 55, 3581-3592 (1997)
[61] Sabana, S.; Nakagawa, M., A study of time-dependent fractal dimensions of vocal sounds, J. Phys. Soc. Jpn., 64, 3226-3238 (1995)
[62] Sabatier, J.; Agrawal, O. P.; Tenreiro Machado, J. A., Advances in Fractional Calculus (2007), Springer: Springer Netherlands · Zbl 1116.00014
[63] Spiro, A., The structure equations of a complex Finsler manifold, Asian J. Math., 5, 291-326 (2001) · Zbl 1020.53048
[64] Shen, Z., Geometric meanings of curvatures in Finsler geometry · Zbl 0991.53051
[65] Shen, Z., Differential Geometry of Sprays and Finsler Spaces (2001), Kluwer: Kluwer Dordrecht · Zbl 1009.53004
[66] Tarasov, V. E., Wave equation for fractal solid string, Mod. Phys. Lett. B, 19, 721-728 (2005) · Zbl 1078.74021
[67] Udriste, C.; Opris, D., Euler-Lagrange-Hamilton dynamics with fractional action, WSEAS Trans. Math., 7, 19-30 (2008)
[68] Valerio, D.; Costa, J. S., Variable order fractional controllers, Asian J. Control, 15, 648-657 (2013) · Zbl 1327.93224
[69] Wan, X., Holomorphic sectional curvature of complex Finsler manifolds, J. Geom. Anal., 29, 194-216 (2019) · Zbl 1507.53071
[70] Weinstein, A., Lagrangian mechanics and groupoids, Fields Inst. Commun., 7, 207-231 (1996) · Zbl 0844.22007
[71] Weinstein, A., Groupoids: unifying internal and external symmetry. A tour through some examples, Not. Am. Math. Soc., 43, 744-752 (1996) · Zbl 1044.20507
[72] Weinstein, A., Groupoids: unifying internal and external symmetry. A tour through some examples, (Groupoids in Analysis, Geometry, and Physics. Groupoids in Analysis, Geometry, and Physics, Boulder, CO, 1999. Groupoids in Analysis, Geometry, and Physics. Groupoids in Analysis, Geometry, and Physics, Boulder, CO, 1999, Contemp. Math., vol. 282 (2001), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 1-19 · Zbl 1002.20032
[73] West, B. J.; Bologna, M.; Grigolini, P., Physics of Fractal Operators (2003), Springer-Verlag: Springer-Verlag New York
[74] Zhou, Z.-M., Measurement of time-dependent fractal dimension for time series of silicon content in pig iron, Phys. A, Stat. Mech. Appl., 376, 133-138 (2007)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.