×

The nonlinear analysis of perturbation solution for a parabolic differential system. (English) Zbl 1252.35155

Summary: By investigation of perturbation solution for nonlinear reaction-diffusion system, we derive related differential model for perturbations that involves weak nonlinearities up to third order. For a first time, this model is shown to result in derivation of the system for amplitude distribution by means of nonlinear integration on orthogonal basis in spatial region. The obtained time-dependent system (TDS) contains all possible functional relations between the modes of wave train under consideration along with delayed relations, and after numerical simulation it provides some conclusions concerning the natural frequency of the investigated self-organization process in active medium. The related matrix and modulo operations which substantiate the derivation of the TDS are also considered.

MSC:

35K57 Reaction-diffusion equations
35A25 Other special methods applied to PDEs
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] G. Nicolis and I. Prigogine, Self-Organization in Nonequilibrium Systems, Wiley-Interscience, New York, NY, USA, 1977. · Zbl 0375.92007 · doi:10.1007/BF02462929
[2] R. A. Barrio and C. Varea, “Non-Linear Systems,” Physica A, vol. 372, no. 2, pp. 210-223, 2006. · doi:10.1016/j.physa.2006.08.011
[3] M. C. Cross and P. C. Hohenberg, “Pattern formation outside of equilibrium,” Reviews of Modern Physics, vol. 65, no. 3, pp. 851-1107, 1993. · Zbl 1371.37001 · doi:10.1103/RevModPhys.65.851
[4] M. Hirota, T. Tatsuno, and Z. Yoshida, “Resonance between continuous spectra: secular behavior of Alfvén waves in a flowing plasma,” Physics of Plasmas, vol. 12, no. 1, p. 012107, 11, 2005. · doi:10.1063/1.1834591
[5] R. K. Dodd, J. C. Eilbeck, J. D. Gibbon, and H. C. Morris, Solitons and Nonlinear Wave E quations, Academic Press, London, UK, 1982. · Zbl 0496.35001
[6] V. F. Dailyudenko, “Instabilities on normal modes of perturbation solution for a nonlinear single-diffusive system,” International Journal of Nonlinear Science, vol. 11, no. 2, pp. 143-152, 2011. · Zbl 1234.35029
[7] H. Mori and Y. Kuramoto, Dissipative Structures and Chaos, Springer-Verlag, New York, NY, USA, 1998. · Zbl 0904.58042 · doi:10.1007/978-3-642-80376-5
[8] A. T. Winfree, “Alternative stable rotors in an excitable medium,” Physica D, vol. 49, no. 1-2, pp. 125-140, 1991.
[9] M. Bar and L. Brusch, “Breakup of spiral waves caused by radial dynamics: Eckhause and finite wavenumber instabilities,” New Journal of Physics, vol. 6, pp. 1-22, 2004. · doi:10.1088/1367-2630/6/1/001
[10] J. J. Tyson and J. P. Keener, “Spiral waves in a model of myocardium,” Physica D, vol. 29, no. 1-2, pp. 215-222, 1987. · Zbl 0629.76140 · doi:10.1016/0167-2789(87)90057-1
[11] H. Sakaguchi and T. Fujimoto, “Forced entrainment and elimination of spiral waves for the FitzHugh-Nagumo equation,” Progress of Theoretical Physics, vol. 108, no. 2, pp. 241-252, 2002. · Zbl 1036.37033 · doi:10.1143/PTP.108.241
[12] B. Sandstede and A. Scheel, “Absolute versus convective instability of spiral waves,” Physical Review E. Statistical, Nonlinear, and Soft Matter Physics, vol. 62, no. 6, part A, pp. 7708-7714, 2000. · doi:10.1103/PhysRevE.62.7708
[13] H. Zhang, B. Hu, and G. Hu, “Suppression of spiral waves and spatiotemporal chaos by generating target waves in excitable media,” Physical Review E, vol. 68, no. 2, part 2, p. 026134, 2003.
[14] V. F. Dailyudenko, “Analytical models of instabilities on normal modes of perturbation solution for a parabolic single-diffusive system,” Advances and Applications in Mathematical Sciences, vol. 8, no. 2, pp. 141-166, 2011. · Zbl 1236.35088
[15] H. Ji, J. Qiu, K. Zhu, and A. Badel, “Two-mode vibration control of a beam using nonlinear synchronized switching damping based on maximization of converted energy,” Journal of Sound and Vibration, vol. 329, no. 14, pp. 2751-2767, 2010. · doi:10.1016/j.jsv.2010.01.012
[16] H. G. Schuster, Deterministic Chaos, VCH Verlagsgesellschaft mbH, Weinheim, Germany, 2nd edition, 1988.
[17] A. P. Munuzuri, M. Gomez-Gesteira, V. Perez-Munuzuri, V. V. Krinsky, and V. Peres-Villar, “Parametric resonance of a vortex in an active medium,” Physical Review E, vol. 50, no. 5, pp. 4258-4261, 1994. · doi:10.1103/PhysRevE.50.4258
[18] S. A. Vysotsky, R. V. Cheremin, and A. Loskutov, “Suppression of spatio-temporal chaos in simple models of re-entrant fibrillations,” Journal of Physics, vol. 23, pp. 202-209, 2005.
[19] K. Martinez, A. L. Lin, R. Kharrazian, X. Sailer, and H. L. Swinney, “Resonance in periodically inhibited reaction-diffusion systems,” Physica D, vol. 168-169, pp. 1-9, 2002. · Zbl 1004.35015 · doi:10.1016/S0167-2789(02)00490-6
[20] V. F. Dailyudenko, “The integrated and local estimations of instability for a class of autonomous delay systems,” Chaos, Solitons & Fractals, vol. 30, no. 3, pp. 759-768, 2006. · Zbl 1151.34331 · doi:10.1016/j.chaos.2005.08.216
[21] E. Simbawa, P. C. Matthews, and S. M. Cox, “Nikolaevskiy equation with dispersion,” Physical Review E, vol. 81, no. 3, pp. 036220.1-03622011, 2010.
[22] A. N. Tikhonov and A. A. Samarsky, Equations of Mathematical Physics, Nauka, Moscow, Russia, 1977.
[23] D. Bensimon, B. I. Shraiman, and V. Croquette, “Nonadiabatic effect in convection,” Physical Review A, vol. 38, no. 10, pp. 5461-5464, 1988. · doi:10.1103/PhysRevA.38.5461
[24] M. G. Clerc, C. Falcon, and E. Tirapegui, “Additive noise induced front propagation,” Physical Review Letters, vol. 94, no. 14, p. 148302, 2005. · doi:10.1103/PhysRevLett.94.148302
[25] M. G. Clerc and C. Falcon, “Localized patterns and hole solutions in one-dimensional extended systems,” Physica A, vol. 356, p. 48, 2005. · doi:10.1016/j.physa.2005.05.011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.