×

Fast algorithms for large dense matrices with applications to biofluids. (English) Zbl 1452.65052

Summary: Numerical simulation of biofluids entails solving equations of fluid-structure interactions. At zero Reynolds number, solvers such as the Method of Regularized Stokeslets (MRS) give rise to large and dense matrices in practical applications where the number of structures immersed in the fluid is large. Building on previous work for an unbounded fluid domain, we first extend the Kernel-Independent Fast Multipole Method (KIFMM) for MRS to compute the matrix-vector products for the fluid flow induced by point forces above a stationary wall. In this case, the use of a regularized image system introduces additional terms to the solution which cause the matrix-vector multiplication to be quite challenging. In addition, we study the case where a linear system needs to be solved for the unknown forces that structures with known velocities exert on the fluid. Our main contribution is proposing several preconditioning techniques for the matrices associated with a few variants of MRS, including the case where a force-free, torque-free condition is imposed. They take advantage of the data-sparsity of FMM matrices as well as properties of Krylov subspaces. Our approach is memory efficient, capable of handling non-uniformly distributed structures and applicable to all FMM matrices. It enables efficient computation of the flow field surrounding a large group of dynamic micro-structures; in particular, we study the effects of fluid mixing caused by the periodic beating of a dense carpet of lung cilia.

MSC:

65F08 Preconditioners for iterative methods
92C35 Physiological flow
76D07 Stokes and related (Oseen, etc.) flows
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
65Z05 Applications to the sciences
65M99 Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems

Software:

HOT
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Cisneros, L.; Kessler, J.; Ganguly, S.; Goldstein, R., Dynamics of swimming bacteria: transition to directional order at high concentration, Phys. Rev. E, 83, Article 061907 pp. (2011)
[2] Mendelson, N.; Bourque, A.; Wilkening, K.; Anderson, K.; Watkins, J., Organized cell swimming motions in bacillus subtilis colonies: patterns of short-lived whirls and jets, J. Bacteriol., 181, 600-609 (1999)
[3] Thar, R.; Kuhl, M., Conspicuous veils formed by vibrioid bacteria on sulfidic marine sediment, Appl. Environ. Microbiol., 68, 6310-6320 (2002)
[4] Wioland, H.; Woodhouse, F.; Dunkel, J.; Kessler, J.; Goldstein, R., Confinement stabilizes a bacterial suspension into a spiral vortex, Phys. Rev. Lett., 110, Article 268102 pp. (2013)
[5] Moore, H.; Dvorakova, K.; Jenkins, N.; Breed, W., Exceptional sperm cooperation in the wood mouse, Nature, 418, 174-177 (2002)
[6] Riedel, I.; Kruse, K.; Howard, J., A self-organized vortex array of hydrodynamically entrained sperm cells, Science, 309, 300-303 (2005)
[7] Sanchez, T.; Chen, D.; DeCamp, S.; Heymann, M.; Dogic, Z., Spontaneous motion in hierarchically assembled active matter, Nature, 491, 431-435 (2012)
[8] Surrey, T.; Nedelec, F.; Leibler, S.; Karsenti, E., Physical properties determining self-organization of motors and microtubules, Science, 292, 1167-1171 (2001)
[9] Peskin, C., The immersed boundary method, Acta Numer., 11, 459-517 (2002) · Zbl 1123.74309
[10] Pozrikidis, C., Boundary Integral and Singularity Methods for Linearized Viscous Flow (1992), Cambridge University Press · Zbl 0772.76005
[11] Brady, J., Stokesian dynamics, Annu. Rev. Fluid Mech., 20, 111-156 (1988)
[12] Banchio, A.; Brady, J., Accelerated Stokesian dynamics: Brownian motion, J. Chem. Phys., 118, 10323-10332 (2003)
[13] Sierou, A.; Brady, J., Accelerated Stokesian dynamics simulations, J. Fluid Mech., 448, 115-146 (2001) · Zbl 1045.76034
[14] Cortez, R., The method of regularized Stokeslets, SIAM J. Sci. Comput., 23, 1204-1225 (2001) · Zbl 1064.76080
[15] Cortez, R.; Fauci, L.; Medovikov, A., The method of regularized Stokeslets in three dimensions: analysis, validation, and application to helical swimming, Phys. Fluids, 17, Article 031504 pp. (2005) · Zbl 1187.76105
[16] Rotne, J.; Prager, S., Variational treatment of hydrodynamic interaction in polymers, J. Chem. Phys., 50, 4831-4837 (1969)
[17] Yamakawa, H., Transport properties of polymer chains in dilute solution: hydrodynamic interaction, J. Chem. Phys., 53, 436-443 (1970)
[18] Cheng, H.; Greengard, L.; Rokhlin, V., A fast adaptive multipole algorithm in three-dimensions, J. Comput. Phys., 155, 468-498 (1999) · Zbl 0937.65126
[19] Greengard, L.; Rokhlin, V., A fast algorithm for particle simulations, J. Comput. Phys., 73, 325-348 (1987) · Zbl 0629.65005
[20] Greengard, L.; Rokhlin, V., A new version of the fast multipole method for the Laplace equation in three dimensions, Acta Numer., 6, 838-853 (1997)
[21] Rokhlin, V., Rapid solution of integral equations of classical potential theory, J. Comput. Phys., 60, 187-207 (1985) · Zbl 0629.65122
[22] Tornberg, A.; Greengard, L., A fast multipole method for the three-dimensional stokes equations, J. Comput. Phys., 227, 1613-1619 (2008) · Zbl 1290.76116
[23] Barnes, J.; Hut, P., A hierarchical O(N log N) force-calculation algorithm, Nature, 324, 446-449 (1986)
[24] Barnes, J., A modified tree code: don’t laugh; it runs, J. Comput. Phys., 87, 161-170 (1990) · Zbl 0689.68002
[25] Pfalzner, S.; Gibbon, P., Many Body Tree Methods in Physics (1996), Cambridge University Press: Cambridge University Press Cambridge, UK
[26] Wang, L.; Tlupova, S.; Krasny, R., A treecode algorithm for 3D Stokeslets and stresslets (2018), in preparation
[27] Wang, L.; Krasny, R.; Tlupova, S., A kernel-independent treecode based on barycentric Lagrange interpolation (2019), in preparation
[28] Ying, L.; Biros, G.; Zorin, D., A kernel-independent adaptive fast multipole algorithm in two and three dimensions, J. Comput. Phys., 196, 591-626 (2004) · Zbl 1053.65095
[29] Ying, L., A kernel independent fast multipole algorithm for radial basis functions, J. Comput. Phys., 213, 451-457 (2006) · Zbl 1089.65018
[30] Rostami, M.; Olson, S., Kernel-independent fast multipole method within the framework of regularized Stokeslets, J. Fluids Struct., 67, 60-84 (2016)
[31] Lauga, E.; Powers, T., The hydrodynamics of swimming microorganisms, Rep. Prog. Phys., 72, Article 096601 pp. (2009)
[32] Fauci, L.; McDonald, A., Sperm motility in the presence of boundaries, Bull. Math. Biol., 57, 679-699 (1995) · Zbl 0826.92017
[33] Huang, J.; Carichino, L.; Olson, S., Hydrodynamic interactions of actuated elastic filaments near a planar wall with applications to sperm motility, J. Coupled Syst. Multiscale Dyn., 6, 163-175 (2018)
[34] Woolley, D., Motility of spermatozoa at surfaces, Reproduction, 126, 259-270 (2003)
[35] Smith, D.; Blake, J., Surface accumulation of spermatozoa: a fluid dynamic phenomenon, Math. Sci., 34, 74-87 (2009) · Zbl 1422.76216
[36] Rothschild, L., Non-random distribution of bull spermatozoa in a drop of sperm suspension, Nature, 198, 1221-1222 (1963)
[37] Tung, C.; Ardon, F.; Fiore, A.; Suarez, S.; Wu, M., Cooperative roles of biological flow and surface topography in guiding sperm migration revealed by a microfluidic model, Lab Chip, 14, 1348-1356 (2014)
[38] Suarez, S., Mammalian sperm interactions with the female reproductive tract, Cell Tissue Res., 363, 185-194 (2016)
[39] Hernandez-Ortiz, J.; Stoltz, C.; Graham, M., Transport and collective dynamics in suspensions of confined self-propelled particles, Phys. Rev. Lett., 95, Article 204501 pp. (2005)
[40] Costanzo, A.; Di Leonardo, R.; Ruocco, G.; Angelani, L., Transport of self-propelling bacteria in micro-channel flow, J. Phys. Condens. Matter, 24, Article 065101 pp. (2012)
[41] Lushi, E.; Willard, H.; Goldstein, R., Fluid flows created by swimming bacteria drive self-organization in confined suspensions, Proc. Natl. Acad. Sci. USA, 111, 9733-9738 (2014)
[42] Tsang, A.; Kanso, E., Flagella-induced transitions in the collective behavior of confined microswimmers, Phys. Rev. E, 90 (2014), 021001(R)
[43] Tsang, A.; Kanso, E., Circularly confined microswimmers exhibit multiple global patterns, Phys. Rev. E, 91, Article 043008 pp. (2015)
[44] Tsang, A.; Kanso, E., Density shock waves in confined microswimmers, Phys. Rev. Lett., 116, Article 048101 pp. (2016)
[45] Blake, J., A note on the image system for a stokeslet in a no-slip boundary, Math. Proc. Camb. Philos. Soc., 70, 303-310 (1971) · Zbl 0244.76016
[46] Yan, W.; Shelley, M., Flexibly imposing periodicity in kernel independent FMM: a multipole-to-local operator approach, J. Comput. Phys., 355, 214-232 (2018) · Zbl 1380.65412
[48] Gimbutas, Z.; Greengard, L.; Veerapaneni, S., Simple and efficient representations for the fundamental solutions of stokes flow in a half-space, J. Fluid Mech., 776, R1 (2015) · Zbl 1382.76049
[49] Bebendorf, M., Hierarchical Matrices: A Means to Efficiently Solve Elliptic Boundary Value Problems (2008), Springer-Verlag: Springer-Verlag Berlin, Germany · Zbl 1151.65090
[50] Hackbusch, W., Hierarchical Matrices: Algorithms and Analysis (2015), Springer-Verlag: Springer-Verlag Berlin, Germany · Zbl 1336.65041
[51] Börm, S., \(H^2\)-matrix arithmetics in linear complexity, Computing, 77, 1-28 (2006) · Zbl 1086.65036
[52] Börm, S., Data-sparse approximation of non-local operators by \(H^2\)-matrices, Linear Algebra Appl., 422, 380-403 (2007) · Zbl 1115.65041
[53] Börm, S.; Reimer, K., Efficient arithmetic operations for rank-structured matrices based on hierarchical low-rank updates, Comput. Vis. Sci., 16, 247-258 (2013) · Zbl 1380.65461
[54] Hackbusch, W.; Börm, S., Data-sparse approximation by adaptive \(H^2\)-matrices, Computing, 69, 1-35 (2002) · Zbl 1012.65023
[55] Hackbusch, W.; Börm, S., \(H^2\)-matrix approximation of integral operators by interpolation, Appl. Numer. Math., 43, 129-143 (2002) · Zbl 1019.65103
[56] Hackbusch, W.; Khoromskij, B.; Sauter, S., On \(H^2\)-matrices, (Bungartz, H.; Hoppe, R.; Ch, Z., Lectures on Applied Mathematics (2000), Springer-Verlag: Springer-Verlag Berlin, Germany), 9-29 · Zbl 0963.65043
[57] Börm, S.; Grasedyck, L.; Hackbusch, W., Introduction to hierarchical matrices with applications, Eng. Anal. Bound. Elem., 27, 405-422 (2003) · Zbl 1035.65042
[58] Hackbusch, W., A sparse matrix arithmetic based on \(H\)-matrices. Part I: introduction to \(H\)-matrices, Computing, 62, 89-108 (1999) · Zbl 0927.65063
[59] Hackbusch, W.; Khoromskij, B., A sparse \(H\)-matrix arithmetic: general complexity estimates, J. Comput. Appl. Math., 125, 479-501 (2000) · Zbl 0977.65036
[60] Aminfar, A.; Ambikasaran, S.; Darve, E., A fast block low-rank dense solver with applications to finite-element matrices, J. Comput. Phys., 304, 170-188 (2016) · Zbl 1349.65595
[61] Kong, W.; Bremer, J.; Rokhlin, V., An adaptive fast direct solver for boundary integral equations in two dimensions, Appl. Comput. Harmon. Anal., 31, 346-369 (2011) · Zbl 1227.65118
[62] Chandrasekaran, M.; Gu, S.; Pals, T., A fast ULV decomposition solver for hierarchically semiseparable representations, SIAM J. Matrix Anal. Appl., 28, 603-622 (2006) · Zbl 1120.65031
[63] Corona, E.; Martinsson, P.; Zorin, D., An \(O(N)\) direct solver for integral equations on the plane, Appl. Comput. Harmon. Anal., 38, 284-317 (2015) · Zbl 1307.65180
[64] Gillman, A.; Martinsson, P., An \(O(N)\) algorithm for constructing the solution operator to 2D elliptic boundary value problems in the absence of body loads, Adv. Comput. Math., 40, 773-796 (2014) · Zbl 1295.65107
[65] Martinsson, P.; Rokhlin, V., A fast direct solver for boundary integral equations in two dimensions, J. Comput. Phys., 205, 1-23 (2005) · Zbl 1078.65112
[66] Xia, J.; Chandrasekaran, M.; Gu, M.; Li, X. S., Fast algorithms for hierarchically semiseparable matrices, Numer. Linear Algebra Appl., 17, 953-976 (2010) · Zbl 1240.65087
[67] Xia, J.; Chandrasekaran, M.; Gu, M.; Li, X. S., Superfast multifrontal method for large structured linear systems of equations, SIAM J. Matrix Anal. Appl., 31, 1382-1411 (2010) · Zbl 1195.65031
[68] Ambikasaran, S.; Darve, E., The inverse fast multipole method (2014)
[69] Coulier, P.; Pouransari, H.; Darve, E., The inverse fast multipole method: using a fast approximate direct solver as a preconditioner for dense linear systems, SIAM J. Sci. Comput., 39, A761-A796 (2017) · Zbl 1365.65068
[70] Alléon, G.; Benzi, M.; Giraud, L., Sparse approximate inverse preconditioning for dense linear systems arising in computational electromagnetics, Numer. Algorithms, 16, 1-15 (1997) · Zbl 0895.65017
[71] Carpentieri, B., Algebraic preconditioners for the Fast Multipole Method in electromagnetic scattering analysis from large structures: trends and problems, Electron. J. Bound. Elem., 7, 13-49 (2009)
[72] Carpentieri, B.; Duff, I.; Giraud, L., Sparse pattern selection strategies for robust Frobenius-norm minimization preconditioners in electromagnetism, Numer. Linear Algebra Appl., 7, 667-685 (2000) · Zbl 1051.65050
[73] Carpentieri, B.; Duff, I.; Giraud, L.; Sylvand, G., Combining fast multipole techniques and an approximate inverse preconditioner for large electromagnetism calculations, SIAM J. Sci. Comput., 27, 774-792 (2005) · Zbl 1089.78023
[74] Chen, K., On a class of preconditioning methods for dense linear systems from boundary elements, SIAM J. Sci. Comput., 20, 684-698 (1998) · Zbl 0924.65037
[75] Lee, J.; Zhang, J.; Lu, C.-C., Sparse inverse preconditioning of multilevel fast multipole algorithm for hybrid integral equations in electromagnetics, IEEE Trans. Antennas Propag., 52, 2277-2287 (2004) · Zbl 1368.78050
[76] Saad, Y., Iterative Methods for Sparse Linear Systems (2003), SIAM: SIAM Philadelphia, USA · Zbl 1002.65042
[77] Ibeid, H.; Yokota, R.; Pestana, J.; Keyes, D., Fast multipole preconditioners for sparse matrices arising from elliptic equations, Comput. Vis. Sci., 18, 213-229 (2018) · Zbl 1398.65039
[78] Yokota, R.; Ibeid, H.; Keyes, D., Fast multipole method as a matrix-free hierarchical low-rank approximation, (Eigenvalue Problems: Algorithms, Software and Applications in Petascale Computing (2017), Springer International: Springer International Switzerland), 267-286
[79] Jung, S.; Mareck, K.; Fauci, L.; Shelley, M., Rotational dynamics of a superhelix towed in a Stokes fluid, Phys. Fluids, 19, Article 103105 pp. (2007), pp. 1-6 · Zbl 1182.76361
[80] Rodenborn, B.; Chen, C.; Swinney, H.; Liu, B.; Zhang, H., Propulsion of microorganisms by a helical flagellum, Proc. Natl. Acad. Sci. USA, 110, 338-347 (2013)
[81] Bouzarth, E. L.; Minion, M. L., Modeling slender bodies with the method of regularized Stokeslets, J. Comput. Phys., 230, 3929-3947 (2011) · Zbl 1369.76036
[82] Nguyen, H.; Ortiz, R.; Cortez, R.; Fauci, L., The action of waving cylindrical rings in a viscous fluid, J. Fluid Mech., 671, 574-586 (2011) · Zbl 1225.76323
[83] Leiderman, K.; Bouzarth, E.; Cortez, R.; Layton, A., A regularization method for the numerical solution of periodic stokes flow, J. Comput. Phys., 236, 187-202 (2013) · Zbl 1286.76043
[84] Flores, H.; Lobaton, E.; Mendez-Diez, S.; Tlupova, S.; Cortez, R., A study of bacterial flagellar bundling, Bull. Math. Biol., 65, 137-168 (2005) · Zbl 1334.92029
[85] Lim, S., Dynamics of an open elastic rod with intrinsic curvature and twist in a viscous fluid, Phys. Fluids, 22, Article 024104 pp. (2010) · Zbl 1183.76313
[86] Lim, S.; Ferent, A.; Wang, X.; Peskin, C., Dynamics of a closed rod with twist and bend in fluid, SIAM J. Sci. Comput., 31, 273-302 (2008) · Zbl 1404.92138
[87] Olson, S.; Lim, S.; Cortez, R., Modeling the dynamics of an elastic rod with intrinsic curvature and twist using a regularized stokes formulation, J. Comput. Phys., 283, 169-187 (2013) · Zbl 1286.74122
[88] Ainley, J.; Durkin, S.; Embid, R.; Boindala, P.; Cortez, R., The method of images for regularized Stokeslets, J. Comput. Phys., 227, 4600-4616 (2008) · Zbl 1388.76060
[89] Cortez, R.; Varela, D., A general system of images for regularized stokeslets and other elements near a plane wall, J. Comput. Phys., 285, 41-54 (2015) · Zbl 1351.76022
[90] Adrian, R.; Westerweel, J., Particle Image Velocimetry (2011), Cambridge University Press: Cambridge University Press Cambridge, UK
[91] Schroeder, A.; Willert, C., Particle Image Velocimetry: New Developments and Recent Applications (2008), Springer: Springer Berlin, Germany
[92] Saad, Y.; Schultz, M., GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 7, 856-869 (1986) · Zbl 0599.65018
[93] Balboa Usabiaga, F.; Kallemov, B.; Delmotte, B.; Bhalla, A.; Griffith, B.; Donev, A., Hydrodynamics of suspensions of passive and active rigid particles: a rigid multiblob approach, Commun. Appl. Math. Comput. Sci., 11, 217-296 (2016)
[94] Nazockdast, E.; Rahimian, A.; Zorin, D.; Shelley, M., A fast platform for simulating semi-flexible fiber suspensions applied to cell mechanics, J. Comput. Phys., 329, 173-209 (2017) · Zbl 1406.92032
[95] Parks, M.; De Sturler, E.; Mackey, G.; Johnson, D.; Maiti, S., Recycling Krylov subspaces for sequences of linear systems, SIAM J. Sci. Comput., 28, 1651-1674 (2006) · Zbl 1123.65022
[96] Elman, H.; Silvester, D.; Wathen, A., Finite Elements and Fast Iterative Solvers with Applications in Incompressible Fluid Dynamics (2014), Oxford University Press: Oxford University Press Oxford · Zbl 1304.76002
[97] Blake, J., A model for the micro-structure in ciliated organisms, J. Fluid Mech., 55, 1-23 (1972) · Zbl 0247.76115
[98] Fulford, G.; Blake, J., Muco-ciliary transport in the lung, J. Theor. Biol., 121, 381-402 (1986)
[99] Sanderson, M.; Sleigh, M., Ciliary activity of cultured rabbit tracheal epithelium, J. Cell Sci., 47, 331-347 (1981)
[100] Ding, Y.; Nawroth, J.; McFall-Ngai, M.; Kanso, E., Mixing and transport by ciliary carpets: a numerical study, J. Fluid Mech., 743, 124-140 (2014)
[101] Guo, H.; Nawroth, J.; Ding, Y.; Kanso, E., Cilia beating patterns are not hydrodynamically optimal, Phys. Fluids, 26, Article 091901 pp. (2014)
[102] Ding, Y.; Kanso, E., Selective particle capture by asynchronously beating cilia, Phys. Fluids, 27, Article 121902 pp. (2015)
[103] Nawroth, J.; Guo, H.; Koch, E.; Heath-Heckman, E.; Hermanson, J.; Ruby, E.; Dabiri, J.; Kanso, E.; McFall-Ngai, M., Motile cilia create fluid-mechanical microhabitats for the active recruitment of the host microbiome, Proc. Natl. Acad. Sci. USA, 114, 9510-9516 (2017)
[104] Carrier, J.; Greengard, L.; Rokhlin, V., A fast adaptive multipole algorithm for particle simulations, SIAM J. Sci. Stat. Comput., 9, 669-686 (1988) · Zbl 0656.65004
[105] Warren, M.; Salmon, J., A portable parallel particle program, Comput. Phys. Commun., 87, 266-290 (1995) · Zbl 0923.76191
[106] Dehnen, W., A hierarchical O(N) force calculation algorithm, J. Comput. Phys., 179, 27-42 (2002) · Zbl 1130.85303
[107] Cortez, R.; Hoffmann, F., A fast numerical method for computing doubly-periodic regularized stokes flow in 3d, J. Comput. Phys., 258, 1-14 (2014) · Zbl 1349.76596
[108] Leiderman, K.; Bouzarth, E.; Nguyen, H.-N., A regularization method for the numerical solution of doubly-periodic stokes flow, (AMS Proceeding (2014))
[109] Hoffmann, F.; Cortez, R., Numerical computation of doubly-periodic Stokes flow bounded by a plane with applications to nodal cilia, Commun. Comput. Phys., 22, 620-642 (2017) · Zbl 1488.76033
[110] Nguyen Leiderman, H., Computation of the singular and regularized image systems for doubly-periodic stokes flow in the presence of a wall, J. Comput. Phys., 297, 442-461 (2015) · Zbl 1349.76074
[111] Mannan, F.; Cortez, R., An explicit formula for two-dimensional singly-periodic regularized stokeslets flow bounded by a plane wall, Commun. Comput. Phys., 23, 142-167 (2018) · Zbl 1488.76035
[112] Martin, P., On the use of approximate fundamental solutions: connections with the method of fundamental solutions and the method of regularized stokeslets, Eng. Anal. Bound. Elem., 99, 23-28 (2019) · Zbl 1464.76100
[113] Liang, Z.; Gimbutas, Z.; Greengard, L.; Huang, J.; Jiang, S., A fast multipole method for the Rotne-Prager-Yamakawa tensor and its applications, J. Comput. Phys., 234, 133-139 (2013) · Zbl 1284.76318
[114] Swan, J.; Brady, J., Simulation of hydrodynamically interacting particles near a no-slip boundary, Phys. Fluids, 19, Article 113306 pp. (2007) · Zbl 1182.76735
[115] Shields, A.; Fiser, B.; Evans, B.; Falvo, M.; Washburn, S.; Superfine, R., Biomimetic cilia arrays generate simultaneous pumping and mixing regimes, Proc. Natl. Acad. Sci. USA, 107, 15670-15675 (2010)
[116] Dillon, R.; Fauci, L., An integrative model of internal axoneme mechanics and external fluid dynamics in ciliary beating, J. Theor. Biol., 207, 415-430 (2000)
[117] Guo, H.; Nawroth, J.; Ding, Y.; Kanso, E., Cilia beating patterns are not hydrodynamically optimal, Phys. Fluids, 26, Article 091901 pp. (2014)
[118] Mitran, S., Metachronal wave formation in a model of pulmonary cilia, Comput. Struct., 85, 763-774 (2007)
[119] Smith, D., A boundary element regularized stokeslet method applied to cilia- and flagella-driven flow, Proc. R. Soc. A, Math. Phys. Eng. Sci., 465, 3605-3626 (2009) · Zbl 1195.76452
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.