×

A \(k\)-shell decomposition method for weighted networks. (English) Zbl 1448.90023


MSC:

90B10 Deterministic network models in operations research
91D30 Social networks; opinion dynamics
91G45 Financial networks (including contagion, systemic risk, regulation)

Software:

MCODE
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] Albert R and Barabási A L 2002 Statistical mechanics of complex networks Rev. Mod. Phys.74 47-97 · Zbl 1205.82086
[2] Dorogovtsev S N and Mendes J F F 2003 Evolution of Networks: From Biological Nets to the Internet and WWW (Oxford: Oxford University Press) · Zbl 1109.68537
[3] Caldarelli G 2007 Scale-Free Networks: Complex Webs in Nature and Technology (Oxford: Oxford University Press) · Zbl 1119.94001
[4] Barrat A, Barthélemy M and Vespignani A 2008 Dynamical Processes on Complex Networks (Cambridge: Cambridge University Press) · Zbl 1198.90005
[5] Cohen R and Havlin S 2010 Complex Networks: Structure, Robustness and Function (Cambridge: Cambridge University Press)
[6] Newman M E J 2010 Networks: An Introduction (Oxford: Oxford University Press) · Zbl 1195.94003
[7] Jackson M O 2010 Social and Economic Networks (Princeton, NJ: Princeton University Press)
[8] Snijders T A B, Pattison P E, Robins G L and Handcock M S 2006 New specifications for exponential random graph models Sociol. Methodol.36 99-153
[9] Borgatti S P 2006 Identifying sets of key players in a social network Comput. Math. Organ. Theory12 21-34 · Zbl 1198.91180
[10] Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D and Alon U 2002 Network motifs: simple building blocks of complex networks Science298 824-7
[11] Alon U 2003 Biological networks: the tinkerer as an engineer Science301 1866-7
[12] Khanin R and Wit E 2006 How scale-free are biological networks J. Comput. Biol.13 810-8
[13] Gallos L K, Makse H A and Sigman M 2012 A small world of weak ties provides optimal global integration of self-similar modules in functional brain networks Proc. Natl Acad. Sci. USA109 2825-30
[14] Bashan A, Bartsch R P, Kantelhardt J W, Havlin S and Ivanov P C 2012 Network physiology reveals relations between network topology and physiological function Nature Commun.3 702
[15] Reed D A, Kapur K C and Christie R D 2009 Methodology for assessing the resilience of networked infrastructure Syst. J. IEEE3 174-80
[16] Johansson J and Hassel H 2010 An approach for modelling interdependent infrastructures in the context of vulnerability analysis Reliab. Eng. Syst. Saf.95 1335-44
[17] Tsonis A A and Swanson K L 2008 Topology and predictability of El Niño and La Niña networks Phys. Rev. Lett.100 228502
[18] Donges J F, Zou Y, Marwan N and Kurths J 2009 The backbone of the climate network Europhys. Lett.87 48007
[19] Gozolchiani A, Havlin S and Yamasaki K 2011 Emergence of El Niño as an autonomous component in the climate network Phys. Rev. Lett.107 148501
[20] Schweitzer F, Fagiolo G, Sornette D, Vega-Redondo F, Vespignani A and White D R 2009 Economic networks: the new challenges Science325 422-5 · Zbl 1226.91057
[21] Garas A, Argyrakis P, Rozenblat C, Tomassini M and Havlin S 2010 Worldwide spreading of economic crisis New J. Phys.12 113043
[22] Vitali S, Glattfelder J B and Battiston S 2011 The network of global corporate control PLoS One6 e25995
[23] Harmon D, Stacey B and Bar-Yam Y 2010 Networks of economic market interdependence and systemic risk arXiv:1011.3707v2
[24] Bonanno G, Caldarelli G, Lillo F and Mantegna R 2003 Topology of correlation-based minimal spanning trees in real and model markets Phys. Rev. E 68 046130
[25] Garas A, Argyrakis P and Havlin S 2008 The structural role of weak and strong links in a financial market network Eur. Phys. J. B 63 265-71 · Zbl 1189.91117
[26] Daley D J and Kendall D G 1965 Stochastic rumours IMA J. Appl. Math.1 42-55
[27] Colizza V, Barrat A, Barthélemy M and Vespignani A 2006 The role of the airline transportation network in the prediction and predictability of global epidemics Proc. Natl Acad. Sci. USA103 2015-20
[28] Castellano C, Fortunato S and Loreto V 2009 Statistical physics of social dynamics Rev. Mod. Phys.81 591-646
[29] Yang R, Huang L and Lai Y-C 2008 Selectivity-based spreading dynamics on complex networks Phys. Rev. E 78 026111
[30] Yang R, Zhou T, Xie Y-B, Lai Y-C and Wang B-H 2008 Optimal contact process on complex networks Phys. Rev. E 78 066109
[31] Albert R, Jeong H and Barabási A L 2000 Error and attack tolerance of complex networks Nature406 378-82
[32] Cohen R, Erez K, Ben-Avraham D and Havlin S 2000 Resilience of the internet to random breakdowns Phys. Rev. Lett.85 4626-8
[33] Callaway D S, Newman M E, Strogatz S H and Watts D J 2000 Network robustness and fragility: percolation on random graphs Phys. Rev. Lett.85 5468-71
[34] Cohen R, Erez K, Ben-Avraham D and Havlin S 2001 Breakdown of the internet under intentional attack Phys. Rev. Lett.86 3682-5
[35] Gallos L, Cohen R, Argyrakis P, Bunde A and Havlin S 2005 Stability and topology of scale-free networks under attack and defense strategies Phys. Rev. Lett.94 188701
[36] Park J and Barabási A L 2007 Distribution of node characteristics in complex networks Proc. Natl Acad. Sci. USA104 17916-20
[37] Bonacich P 1987 Power and centrality: a family of measures Am. J. Sociol.92 1170-82
[38] Freeman L C 1977 A set of measures of centrality based on betweenness Sociometry40 35-41
[39] Newman M E J 2005 A measure of betweenness centrality based on random walks Soc. Netw.27 39-54
[40] Bollobás B 1984 Graph Theory and Combinatorics: Proc. Cambridge Combinatorial Conf. in Honour of Paul Erdös (New York: Academic)
[41] Seidman S B 1983 Network structure and minimum degree Soc. Netw.5 269-87
[42] Bader G D and Hogue C W V 2003 An automated method for finding molecular complexes in large protein interaction networks BMC Bioinformatics4 2
[43] Wuchty S and Almaas E 2005 Peeling the yeast protein network Proteomics5 444-9
[44] Dorogovtsev S N, Goltsev A V and Mendes J F F 2006 k-core organization of complex networks Phys. Rev. Lett.96 040601
[45] Carmi S, Havlin S, Kirkpatrick S, Shavitt Y and Shir E 2007 A model of internet topology using k-shell decomposition Proc. Natl Acad. Sci. USA104 11150-4
[46] Alvarez-Hamelin J, Dall’Asta L, Barrat A and Vespignani A 2008 K-core decomposition of Internet graphs: hierarchies, self-similarity and measurement biases NHM3 371-93 · Zbl 1145.68470
[47] Shao J, Buldyrev S, Braunstein L, Havlin S and Stanley H E 2009 Structure of shells in complex networks Phys. Rev. E 80 036105
[48] Kitsak M, Gallos L K, Havlin S, Liljeros F, Muchnik L, Stanley H E and Makse H A 2010 Identification of influential spreaders in complex networks Nature Phys.6 888-93
[49] Batagelj V and Zaveršnik M 2011 Fast algorithms for determining (generalized) core groups in social networks Adv. Data Anal. Classif.5 129-45 · Zbl 1284.05252
[50] Newman M E J 2006 Finding community structure in networks using the eigenvectors of matrices Phys. Rev. E 74 036104
[51] Newman M E J 2001 Scientific collaboration networks II. Shortest paths, weighted networks, and centrality Phys. Rev. E 64 016132
[52] Watts D J and Strogatz S H 1998 Collective dynamics of ‘small-world’ networks Nature393 440-2 · Zbl 1368.05139
[53] White J G, Southgate E, Thomson J N and Brenner S 1986 The structure of the nervous system of the nematode Caenorhabditis elegansPhil. Trans. R. Soc. B314 1-340
[54] Colizza V, Pastor-Satorras R and Vespignani A 2007 Reaction – diffusion processes and metapopulation models in heterogeneous networks Nature Phys.3 276-82
[55] Freeman L C 1979 Centrality in social networks conceptual clarification Soc. Netw.1 215-39
[56] Anderson R M and May R M 1992 Infectious Diseases of Humans: Dynamics and Control (Oxford: Oxford Science Publications)
[57] Hethcote H W 2000 The mathematics of infectious diseases SIAM Rev.42 599 · Zbl 0993.92033
[58] Newman M E J 2002 Spread of epidemic disease on networks Phys. Rev. E 66 016128
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.