×

Percolation on complex networks: theory and application. (English) Zbl 07404931

Summary: In the last two decades, network science has blossomed and influenced various fields, such as statistical physics, computer science, biology and sociology, from the perspective of the heterogeneous interaction patterns of components composing the complex systems. As a paradigm for random and semi-random connectivity, percolation model plays a key role in the development of network science and its applications. On the one hand, the concepts and analytical methods, such as the emergence of the giant cluster, the finite-size scaling, and the mean-field method, which are intimately related to the percolation theory, are employed to quantify and solve some core problems of networks. On the other hand, the insights into the percolation theory also facilitate the understanding of networked systems, such as robustness, epidemic spreading, vital node identification, and community detection. Meanwhile, network science also brings some new issues to the percolation theory itself, such as percolation of strong heterogeneous systems, topological transition of networks beyond pairwise interactions, and emergence of a giant cluster with mutual connections. So far, the percolation theory has already percolated into the researches of structure analysis and dynamic modeling in network science. Understanding the percolation theory should help the study of many fields in network science, including the still opening questions in the frontiers of networks, such as networks beyond pairwise interactions, temporal networks, and network of networks. The intention of this paper is to offer an overview of these applications, as well as the basic theory of percolation transition on network systems.

MSC:

82C43 Time-dependent percolation in statistical mechanics
82C26 Dynamic and nonequilibrium phase transitions (general) in statistical mechanics
82C27 Dynamic critical phenomena in statistical mechanics
05C82 Small world graphs, complex networks (graph-theoretic aspects)
60K35 Interacting random processes; statistical mechanics type models; percolation theory
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] Newman, M. E.J., Networks: An Introduction (2010), Oxford University Press · Zbl 1195.94003
[2] Barabási, A.-L., Network Science (2016), Cambridge university press
[3] Albert, R.; Barabási, A.-L., Statistical mechanics of complex networks, Rev. Mod. Phys., 74, 47-97 (2002) · Zbl 1205.82086
[4] Dorogovtsev, S. N.; Mendes, J. F.F., Evolution of networks, Adv. Phys., 51, 1079-1187 (2002)
[5] Boccaletti, S.; Latora, V.; Moreno, Y.; Chavez, M.; Hwang, D.-U., Complex networks: Structure and dynamics, Phys. Rep., 424, 175-308 (2006), http://www.sciencedirect.com/science/article/pii/S037015730500462X · Zbl 1371.82002
[6] Dorogovtsev, S. N.; Goltsev, A. V.; Mendes, J. F.F., Critical phenomena in complex networks, Rev. Mod. Phys., 80, 1275-1335 (2008)
[7] Stauffer, D.; Aharony, A., Introduction to Percolation Theory (1991), Taylor & Francis: Taylor & Francis London
[8] Boccaletti, S.; Bianconi, G.; Criado, R.; del Genio, C.; Gómez-Gardeñes, J.; Romance, M.; Sendiña-Nadal, I.; Wang, Z.; Zanin, M., The structure and dynamics of multilayer networks, Phys. Rep., 544, 1-122 (2014), http://www.sciencedirect.com/science/article/pii/S0370157314002105
[9] Bianconi, G., Multilayer Networks: Structure and Function (2018), Oxford University Press · Zbl 1391.94004
[10] Battiston, F.; Cencetti, G.; Iacopini, I.; Latora, V.; Lucas, M.; Patania, A.; Young, J.-G.; Petri, G., Networks beyond pairwise interactions: Structure and dynamics, Phys. Rep., 874, 1-92 (2020)
[11] Flory, P. J., Molecular size distribution in three dimensional polymers. I. Gelation, J. Am. Chem. Soc., 63, 3083 (1941)
[12] Flory, P. J., Molecular size distribution in three dimensional polymers. II. Trifunctional branching units, J. Am. Chem. Soc., 63, 3096 (1941)
[13] Flory, P. J., Molecular size distribution in three dimensional polymers. III. Tetrafunctional branching units, J. Am. Chem. Soc., 63, 3091 (1941)
[14] Broadbent, S. R.; Hammersley, J. M., Percolation processes: I. Crystals and mazes, Math. Proc. Cambridge Philos. Soc., 53, 629-641 (1957) · Zbl 0091.13901
[15] Stauffer, D., Scaling theory of percolation clusters, Phys. Rep., 54, 1-74 (1979), http://www.sciencedirect.com/science/article/pii/0370157379900607
[16] Essam, J., Percolation theory, Rep. Prog. Phys., 43, 833-912 (1980)
[17] Isichenko, M. B., Percolation, statistical topography, and transport in random media, Rev. Mod. Phys., 64, 961-1043 (1992)
[18] Sahimi, M., Flow phenomena in rocks: from continuum models to fractals, percolation, cellular automata, and simulated annealing, Rev. Mod. Phys., 65, 1393-1534 (1993)
[19] Nakayama, T.; Yakubo, K.; Orbach, R. L., Dynamical properties of fractal networks: Scaling, numerical simulations, and physical realizations, Rev. Mod. Phys., 66, 381-443 (1994)
[20] Araújo, N.; Grassberger, P.; Kahng, B.; Schrenk, K.; Ziff, R., Recent advances and open challenges in percolation, Eur. Phys. J. Spec. Top., 223, 2307-2321 (2014)
[21] Saberi, A. A., Recent advances in percolation theory and its applications, Phys. Rep., 578, 1-32 (2015), http://www.sciencedirect.com/science/article/pii/S0370157315002008 · Zbl 1357.82032
[22] Hammersley, J. M., Origins of percolation theory, Ann. Israel Phys. Soc., 5, 47-57 (1983)
[23] Pastor-Satorras, R.; Castellano, C.; Van Mieghem, P.; Vespignani, A., Epidemic processes in complex networks, Rev. Mod. Phys., 87, 925-979 (2015)
[24] Wu, F. Y., The Potts model, Rev. Mod. Phys., 54, 235-268 (1982)
[25] Christensen, K.; Moloney, N. R., Complexity and Criticality (2005), Imperial College Press
[26] Ziff, R. M.; Scullard, C. R., Exact bond percolation thresholds in two dimensions, J. Phys. A: Math. Gen., 39, 15083 (2006), http://stacks.iop.org/0305-4470/39/i=49/a=003 · Zbl 1146.82306
[27] Ohzeki, M., Duality with real-space renormalization and its application to bond percolation, Phys. Rev. E, 87, Article 012137 pp. (2013)
[28] Newman, M. E.J.; Ziff, R. M., Efficient Monte Carlo algorithm and high-precision results for percolation, Phys. Rev. Lett., 85, 4104-4107 (2000)
[29] Deng, Y.; Blöte, H. W.J., Monte Carlo Study of the site-percolation model in two and three dimensions, Phys. Rev. E, 72, Article 016126 pp. (2005)
[30] Sykes, M. F.; Essam, J. W., Exact critical percolation probabilities for site and bond problems in two dimensions, J. Math. Phys., 5, 8, 1117-1127 (1964)
[31] Jacobsen, J. L., High-precision percolation thresholds and potts-model critical manifolds from graph polynomials, J. Phys. A: Math. Theor., 47, 13, Article 135001 pp. (2014) · Zbl 1295.82013
[32] Feng, X.; Deng, Y.; Blöte, H. W.J., Percolation transitions in two dimensions, Phys. Rev. E, 78, Article 031136 pp. (2008)
[33] Ziff, R. M.; Gu, H., Universal condition for critical percolation thresholds of kagomé-like lattices, Phys. Rev. E, 79, Article 020102 pp. (2009)
[34] Wang, J.; Zhou, Z.; Zhang, W.; Garoni, T. M.; Deng, Y., Bond and site percolation in three dimensions, Phys. Rev. E, 87, Article 052107 pp. (2013)
[35] Koza, Z.; Poła, J., From discrete to continuous percolation in dimensions 3 to 7, J. Stat. Mech., 2016, 10, Article 103206 pp. (2016) · Zbl 1456.82470
[36] Škvor, J.; Nezbeda, I., Percolation threshold parameters of fluids, Phys. Rev. E, 79, Article 041141 pp. (2009)
[37] Xu, X.; Wang, J.; Lv, J.-P.; Deng, Y., Simultaneous analysis of three-dimensional percolation models, Front. Phys., 9, 1, 113-119 (2013)
[38] Dammer, S. M.; Hinrichsen, H., Spreading with immunization in high dimensions, J. Stat. Mech., 2004, 07, P07011 (2004) · Zbl 1177.92032
[39] Lorenz, C. D.; Ziff, R. M., Precise determination of the bond percolation thresholds and finite-size scaling corrections for the sc, fcc, and bcc lattices, Phys. Rev. E, 57, 230-236 (1998)
[40] Grassberger, P., Critical percolation in high dimensions, Phys. Rev. E, 67, Article 036101 pp. (2003)
[41] Paul, G.; Ziff, R. M.; Stanley, H. E., Percolation threshold, Fisher exponent, and shortest path exponent for four and five dimensions, Phys. Rev. E, 64, Article 026115 pp. (2001)
[42] Ballesteros, H.; Fernández, L.; Martín-Mayor, V.; MuñoẑSudupe, A.; Parisi, G.; Ruiz-Lorenzo, J., Measures of critical exponents in the four-dimensional site percolation, Phys. Lett. B, 400, 346-351 (1997)
[43] Kotwica, M.; Gronek, P.; Malarz, K., Efficient space virtualization for the hoshen-kopelman algorithm, Int. J. Mod. Phys. C, 30, 08, Article 1950055 pp. (2019)
[44] Mertens, S.; Moore, C., Percolation thresholds and Fisher exponents in hypercubic lattices, Phys. Rev. E, 98, Article 022120 pp. (2018)
[45] Xun, Z.; Ziff, R. M., Precise bond percolation thresholds on several four-dimensional lattices, Phys. Rev. Research, 2, Article 013067 pp. (2020)
[46] Adler, J.; Meir, Y.; Aharony, A.; Harris, A. B., Series study of percolation moments in general dimension, Phys. Rev. B, 41, 9183-9206 (1990)
[47] Bollobás, B., Random Graphs (2001), Cambridge University Press · Zbl 0997.05049
[48] Newman, M. E.J.; Strogatz, S. H.; Watts, D. J., Random graphs with arbitrary degree distributions and their applications, Phys. Rev. E, 64, Article 026118 pp. (2001)
[49] Bunde, A.; Havlin, S., Fractals and Disordered Systems (2012), Springer Science & Business Media
[50] Stanley, H. E., Phase Transitions and Critical Phenomena (1971), Clarendon Press: Clarendon Press Oxford
[51] Ma, S.-K., Modern theory of critical phenomena (2018), Routledge
[52] Huang, W.; Hou, P.; Wang, J.; Ziff, R. M.; Deng, Y., Critical percolation clusters in seven dimensions and on a complete graph, Phys. Rev. E, 97, Article 022107 pp. (2018)
[53] Pelissetto, A.; Vicari, E., Critical phenomena and renormalization-group theory, Phys. Rep., 368, 549-727 (2002), http://www.sciencedirect.com/science/article/pii/S0370157302002193 · Zbl 0997.82019
[54] Zinn-Justin, J., Phase Transitions and Renormalization Group (2007), Oxford University Press on Demand · Zbl 1137.82002
[55] Radicchi, F.; Castellano, C., Breaking of the site-bond percolation universality in networks, Nat. Commun., 6, 10196 (2015)
[56] Barabási, A.-L.; Albert, R., Emergence of scaling in random networks, Science, 286, 509-512 (1999) · Zbl 1226.05223
[57] Watts, D. J.; Strogatz, S. H., Collective dynamics of ‘small-world’networks, Nature, 393, 440 (1998) · Zbl 1368.05139
[58] Newman, M.; Watts, D., Renormalization group analysis of the small-world network model, Phys. Lett. A, 263, 341-346 (1999), http://www.sciencedirect.com/science/article/pii/S0375960199007574 · Zbl 0940.82029
[59] Newman, M. E.J., Models of the small world, J. Stat. Phys., 101, 819-841 (2000) · Zbl 1049.82520
[60] Newman, M. E.J.; Moore, C.; Watts, D. J., Mean-field solution of the small-world network model, Phys. Rev. Lett., 84, 3201-3204 (2000)
[61] Bender, E. A.; Canfield, E. R., The asymptotic number of labeled graphs with given degree sequences, J. Comb. Theory A, 24, 296-307 (1978) · Zbl 0402.05042
[62] Bollobás, B., A probabilistic proof of an asymptotic formula for the number of labelled regular graphs, Eur. J. Combin., 1, 311-316 (1980) · Zbl 0457.05038
[63] Burda, Z.; Krzywicki, A., Uncorrelated random networks, Phys. Rev. E, 67, Article 046118 pp. (2003)
[64] Boguñá, M.; Pastor-Satorras, R.; Vespignani, A., Cut-offs and finite size effects in scale-free networks, Eur. Phys. J. B, 38, 205-209 (2004)
[65] Volz, E., Random networks with tunable degree distribution and clustering, Phys. Rev. E, 70, Article 056115 pp. (2004)
[66] Ángeles Serrano, M.; Boguñá, M., Tuning clustering in random networks with arbitrary degree distributions, Phys. Rev. E, 72, Article 036133 pp. (2005)
[67] Goh, K.-I.; Kahng, B.; Kim, D., Universal behavior of load distribution in scale-free networks, Phys. Rev. Lett., 87, Article 278701 pp. (2001)
[68] Caldarelli, G.; Capocci, A.; De Los Rios, P.; Muñoz, M. A., Scale-free networks from varying vertex intrinsic fitness, Phys. Rev. Lett., 89, Article 258702 pp. (2002)
[69] Söderberg, B., General formalism for inhomogeneous random graphs, Phys. Rev. E, 66, Article 066121 pp. (2002)
[70] Chung, F.; Lu, L., The average distances in random graphs with given expected degrees, Proc. Natl. Acad. Sci. USA, 99, 15879-15882 (2002), https://www.pnas.org/content/99/25/15879 · Zbl 1064.05137
[71] Boguñá, M.; Pastor-Satorras, R., Class of correlated random networks with hidden variables, Phys. Rev. E, 68, Article 036112 pp. (2003)
[72] Cohen, R.; Erez, K.; ben Avraham, D.; Havlin, S., Breakdown of the internet under intentional attack, Phys. Rev. Lett., 86, 3682-3685 (2001)
[73] Hong, H.; Ha, M.; Park, H., Finite-size scaling in complex networks, Phys. Rev. Lett., 98, Article 258701 pp. (2007)
[74] Waclaw, B.; Bogacz, L.; Janke, W., Approaching the thermodynamic limit in equilibrated scale-free networks, Phys. Rev. E, 78, Article 061125 pp. (2008)
[75] Castellano, C.; Pastor-Satorras, R., Routes to thermodynamic limit on scale-free networks, Phys. Rev. Lett., 100, Article 148701 pp. (2008)
[76] Baek, Y.; Kim, D.; Ha, M.; Jeong, H., Fundamental structural constraint of random scale-free networks, Phys. Rev. Lett., 109, Article 118701 pp. (2012)
[77] Molloy, M.; Reed, B., A critical point for random graphs with a given degree sequence, Random Struct. Algorithms, 6, 161-180 (1995) · Zbl 0823.05050
[78] Aiello, W.; Chung, F.; Lu, L., A random graph model for power law graphs, Exp. Math., 10, 53-66 (2001) · Zbl 0971.05100
[79] Chung, F.; Lu, L., Connected components in random graphs with given expected degree sequences, Ann. Comb., 6, 125-145 (2002) · Zbl 1009.05124
[80] Janson, S.; Luczak, M. J., A new approach to the giant component problem, Random Struct. Algorithms, 34, 197-216 (2009) · Zbl 1177.05110
[81] Bollobas, B.; Riordan, O., Asymptotic normality of the size of the giant component in a random hypergraph, Random Struct. Algorithms, 41, 441-450 (2012) · Zbl 1255.05125
[82] Hatami, H.; Molloy, M., The scaling window for a random graph with a given degree sequence, Random Struct. Algorithms, 41, 99-123 (2012) · Zbl 1247.05218
[83] Callaway, D. S.; Newman, M. E.J.; Strogatz, S. H.; Watts, D. J., Network robustness and fragility: Percolation on random graphs, Phys. Rev. Lett., 85, 5468-5471 (2000)
[84] Cohen, R.; Erez, K.; ben Avraham, D.; Havlin, S., Resilience of the internet to random breakdowns, Phys. Rev. Lett., 85, 4626-4628 (2000)
[85] Albert, R.; Jeong, H.; Barabási, A.-L., Error and attack tolerance of complex networks, Nature, 406, 378 (2000)
[86] Cohen, R.; Havlin, S., Complex Networks: Structure, Robustness and Function (2010), Cambridge university press · Zbl 1196.05092
[87] Newman, M. E.J., Spread of epidemic disease on networks, Phys. Rev. E, 66, Article 016128 pp. (2002)
[88] Gleeson, J. P.; Melnik, S.; Ward, J. A.; Porter, M. A.; Mucha, P. J., Accuracy of mean-field theory for dynamics on real-world networks, Phys. Rev. E, 85, Article 026106 pp. (2012)
[89] Tishby, I.; Biham, O.; Katzav, E.; Kühn, R., Revealing the microstructure of the giant component in random graph ensembles, Phys. Rev. E, 97, Article 042318 pp. (2018)
[90] Starnini, M.; Pastor-Satorras, R., Temporal percolation in activity-driven networks, Phys. Rev. E, 89, Article 032807 pp. (2014)
[91] Newman, M. E.J., Component sizes in networks with arbitrary degree distributions, Phys. Rev. E, 76, Article 045101 pp. (2007)
[92] Kryven, I., General expression for the component size distribution in infinite configuration networks, Phys. Rev. E, 95, Article 052303 pp. (2017)
[93] Kryven, I., Finite connected components in infinite directed and multiplex networks with arbitrary degree distributions, Phys. Rev. E, 96, Article 052304 pp. (2017)
[94] Potts, R. B., Some generalized order-disorder transformations, Math. Proc. Cambridge Philos. Soc., 48, 106-109 (1952) · Zbl 0048.45601
[95] Stephen, M. J., Percolation problems and the Potts model, Phys. Lett. A, 56, 149-150 (1976)
[96] Wu, F. Y., Percolation and the Potts model, J. Stat. Phys., 18, 115-123 (1978)
[97] Kasteleyn, P. W.; Fortuin, C. M., Phase transitions in lattice systems with random local properties, J. Phys. Soc. JPN, 26, 11 (1969)
[98] Lee, D.-S.; Goh, K.-I.; Kahng, B.; Kim, D., Evolution of scale-free random graphs: Potts model formulation, Nucl. Phys. B, 696, 351-380 (2004), http://www.sciencedirect.com/science/article/pii/S0550321304004298 · Zbl 1236.82029
[99] Lee, D.-S.; Goh, K.-I.; Kahng, B.; Kim, D., Scale-free random graphs and Potts model, Pramana-J. Phys., 64, 1149-1159 (2005)
[100] Bradde, S.; Bianconi, G., The percolation transition in correlated hypergraphs, J. Stat. Mech., 2009, P07028 (2009) · Zbl 1459.82114
[101] Bradde, S.; Bianconi, G., Percolation transition and distribution of connected components in generalized random network ensembles, J. Phys. A: Math. Theor., 42, Article 195007 pp. (2009) · Zbl 1165.82013
[102] Dorogovtsev, S.; Goltsev, A.; Mendes, J. F.F., Potts Model on complex networks, Eur. Phys. J. B, 38, 177-182 (2004)
[103] Karrer, B.; Newman, M. E.J.; Zdeborová, L., Percolation on sparse networks, Phys. Rev. Lett., 113, Article 208702 pp. (2014)
[104] Newman, M. E.J.; Martin, T., Equitable random graphs, Phys. Rev. E, 90, Article 052824 pp. (2014)
[105] Hamilton, K. E.; Pryadko, L. P., Tight lower bound for percolation threshold on an infinite graph, Phys. Rev. Lett., 113, Article 208701 pp. (2014)
[106] Radicchi, F., Predicting percolation thresholds in networks, Phys. Rev. E, 91, Article 010801 pp. (2015)
[107] Radicchi, F., Percolation in real interdependent networks, Nat. Phys., 11, 597-602 (2015)
[108] Allard, A.; Hébert-Dufresne, L.; Young, J.-G.; Dubé, L. J., General and exact approach to percolation on random graphs, Phys. Rev. E, 92, Article 062807 pp. (2015)
[109] Radicchi, F.; Castellano, C., Beyond the locally treelike approximation for percolation on real networks, Phys. Rev. E, 93, Article 030302 pp. (2016)
[110] Kühn, R., Disentangling giant component and finite cluster contributions in sparse random matrix spectra, Phys. Rev. E, 93, Article 042110 pp. (2016)
[111] Timár, G.; da Costa, R. A.; Dorogovtsev, S. N.; Mendes, J. F.F., Nonbacktracking expansion of finite graphs, Phys. Rev. E, 95, Article 042322 pp. (2017)
[112] Bianconi, G.; Radicchi, F., Percolation in real multiplex networks, Phys. Rev. E, 94, Article 060301 pp. (2016)
[113] Bianconi, G., Epidemic spreading and bond percolation on multilayer networks, J. Stat. Mech., 2017, Article 034001 pp. (2017) · Zbl 1456.92132
[114] ichiro Hashimoto, K., Zeta functions of finite graphs and representations of p-adic groups, (Hashimoto, K.; Namikawa, Y., Automorphic Forms and Geometry of Arithmetic Varieties. Automorphic Forms and Geometry of Arithmetic Varieties, Advanced Studies in Pure Mathematics, vol. 15 (1989), Academic Press), 211-280, http://www.sciencedirect.com/science/article/pii/B978012330580050015X
[115] Krzakala, F.; Moore, C.; Mossel, E.; Neeman, J.; Sly, A.; Zdeborova, L.; Zhang, P., Spectral redemption in clustering sparse networks, Proc. Natl. Acad. Sci. USA, 110, 52, 20935-20940 (2013) · Zbl 1359.62252
[116] Zhang, P., Spectral estimation of the percolation transition in clustered networks, Phys. Rev. E, 96, Article 042303 pp. (2017)
[117] Newman, M. E.J.; Ghoshal, G., Bicomponents and the robustness of networks to failure, Phys. Rev. Lett., 100, Article 138701 pp. (2008)
[118] Liu, Y.-Y.; Csóka, E.; Zhou, H.; Pósfai, M., Core percolation on complex networks, Phys. Rev. Lett., 109, Article 205703 pp. (2012)
[119] Tian, L.; Bashan, A.; Shi, D.-N.; Liu, Y.-Y., Articulation points in complex networks, Nat. Commun., 8, 14223 (2017)
[120] Buldyrev, S. V.; Parshani, R.; Paul, G.; Stanley, H. E.; Havlin, S., Catastrophic cascade of failures in interdependent networks, Nature, 464, 1025 (2010)
[121] Parshani, R.; Buldyrev, S. V.; Havlin, S., Interdependent networks: Reducing the coupling strength leads to a change from a first to second order percolation transition, Phys. Rev. Lett., 105, Article 048701 pp. (2010)
[122] Parshani, R.; Buldyrev, S. V.; Havlin, S., Critical effect of dependency groups on the function of networks, Proc. Natl. Acad. Sci. USA, 108, 1007-1010 (2011), https://www.pnas.org/content/108/3/1007
[123] Bollobás, B.; Riordan, O., Clique percolation, Random Struct. Algorithms, 35, 294-322 (2009) · Zbl 1205.60165
[124] Li, M.; Deng, Y.; Wang, B.-H., Clique percolation in random graphs, Phys. Rev. E, 92, Article 042116 pp. (2015)
[125] Callaway, D. S.; Hopcroft, J. E.; Kleinberg, J. M.; Newman, M. E.J.; Strogatz, S. H., Are randomly grown graphs really random?, Phys. Rev. E, 64, Article 041902 pp. (2001)
[126] Dorogovtsev, S. N.; Goltsev, A. V.; Mendes, J. F.F., Pseudofractal scale-free web, Phys. Rev. E, 65, Article 066122 pp. (2002)
[127] Serrano, M. A.; Krioukov, D.; Boguñá, M., Percolation in self-similar networks, Phys. Rev. Lett., 106, Article 048701 pp. (2011)
[128] Auto, D. M.; Moreira, A. A.; Herrmann, H. J.; Andrade, J. S., Finite-size effects for percolation on apollonian networks, Phys. Rev. E, 78, Article 066112 pp. (2008)
[129] Warren, C. P.; Sander, L. M.; Sokolov, I. M., Geography in a scale-free network model, Phys. Rev. E, 66, Article 056105 pp. (2002)
[130] Bateman, H., Higher Transcendental Functions, Vol. I (1953), McGraw-Hill Book Company: McGraw-Hill Book Company New York, https://resolver.caltech.edu/CaltechAUTHORS:20140123-104529738
[131] Cohen, R.; ben Avraham, D.; Havlin, S., Percolation critical exponents in scale-free networks, Phys. Rev. E, 66, Article 036113 pp. (2002)
[132] Cohen, R.; Havlin, S., Fractal dimensions of percolating networks, Physica A, 336, 6-13 (2004)
[133] Janssen, A.; van Leeuwaarden, J. S., Giant component sizes in scale-free networks with power-law degrees and cutoffs, Europhys. Lett., 112, 68001 (2016)
[134] Lee, D.-S.; Kim, J. S.; Kahng, B.; Kim, D., Scale-free random branching trees in supercritical phase, J. Phys. A: Math. Theor., 40, 7139-7149 (2007) · Zbl 1115.82015
[135] Burda, Z.; Correia, J. D.; Krzywicki, A., Statistical ensemble of scale-free random graphs, Phys. Rev. E, 64, Article 046118 pp. (2001)
[136] Goltsev, A. V.; Dorogovtsev, S. N.; Mendes, J. F.F., Critical phenomena in networks, Phys. Rev. E, 67, Article 026123 pp. (2003)
[137] Burda, Z.; Jurkiewicz, J.; Krzywicki, A., Statistical mechanics of random graphs, Physica A, 344, 56-61 (2004)
[138] Kalisky, T.; Cohen, R., Width of percolation transition in complex networks, Phys. Rev. E, 73, Article 035101 pp. (2006)
[139] Wu, Z.; Lagorio, C.; Braunstein, L. A.; Cohen, R.; Havlin, S.; Stanley, H. E., Numerical evaluation of the upper critical dimension of percolation in scale-free networks, Phys. Rev. E, 75, Article 066110 pp. (2007)
[140] Seyed-allaei, H.; Bianconi, G.; Marsili, M., Scale-free networks with an exponent less than two, Phys. Rev. E, 73, Article 046113 pp. (2006)
[141] Timár, G.; Dorogovtsev, S. N.; Mendes, J. F.F., Scale-free networks with exponent one, Phys. Rev. E, 94, Article 022302 pp. (2016)
[142] Boettcher, S.; Cook, J. L.; Ziff, R. M., Patchy percolation on a hierarchical network with small-world bonds, Phys. Rev. E, 80, Article 041115 pp. (2009)
[143] Rozenfeld, H. D.; Song, C.; Makse, H. A., Small-world to fractal transition in complex networks: A renormalization group approach, Phys. Rev. Lett., 104 (2010)
[144] Hasegawa, T.; Sato, M.; Nemoto, K., Generating-function approach for bond percolation in hierarchical networks, Phys. Rev. E, 82, Article 046101 pp. (2010)
[145] Li, D.; Li, G.; Kosmidis, K.; Stanley, H. E.; Bunde, A.; Havlin, S., Percolation of spatially constraint networks, Europhys. Lett., 93, 68004 (2011)
[146] Hasegawa, T.; Nogawa, T., Absence of the nonpercolating phase for percolation on the nonplanar hanoi network, Phys. Rev. E, 87, Article 032810 pp. (2013)
[147] Moore, C.; Newman, M. E.J., Exact solution of site and bond percolation on small-world networks, Phys. Rev. E, 62, 7059-7064 (2000)
[148] Newman, M. E.J.; Jensen, I.; Ziff, R. M., Percolation and epidemics in a two-dimensional small world, Phys. Rev. E, 65, Article 021904 pp. (2002)
[149] Berchenko, Y.; Artzy-Randrup, Y.; Teicher, M.; Stone, L., Emergence and size of the giant component in clustered random graphs with a given degree distribution, Phys. Rev. Lett., 102, Article 138701 pp. (2009)
[150] Wasserman, S.; Faust, K., Social Network Analysis: Methods and Applications (1994), Cambridge University Press
[151] Kiss, I. Z.; Green, D. M., Comment on “Properties of highly clustered networks”, Phys. Rev. E, 78, Article 048101 pp. (2008)
[152] Newman, M. E.J., Random graphs with clustering, Phys. Rev. Lett., 103, Article 058701 pp. (2009)
[153] Miller, J. C., Percolation and epidemics in random clustered networks, Phys. Rev. E, 80, Article 020901 pp. (2009)
[154] Gleeson, J. P.; Melnik, S.; Hackett, A., How clustering affects the bond percolation threshold in complex networks, Phys. Rev. E, 81, Article 066114 pp. (2010)
[155] Serrano, M. A.; Boguñá, M., Percolation and epidemic thresholds in clustered networks, Phys. Rev. Lett., 97, Article 088701 pp. (2006)
[156] Rombach, M. P.; Porter, M. A.; Fowler, J. H.; Mucha, P. J., Core-periphery structure in networks, SIAM J. Appl. Math., 74, 167-190 (2014) · Zbl 1368.62169
[157] Rombach, P.; Porter, M. A.; Fowler, J. H.; Mucha, P. J., Core-periphery structure in networks (revisited), SIAM Rev., 59, 619-646 (2017) · Zbl 1368.62170
[158] Colomer-de Simón, P.; Boguñá, M., Double percolation phase transition in clustered complex networks, Phys. Rev. X, 4, Article 041020 pp. (2014)
[159] Allard, A.; Althouse, B. M.; Scarpino, S. V.; Hébert-Dufresne, L., Asymmetric percolation drives a double transition in sexual contact networks, Proc. Natl. Acad. Sci. USA, 114, 8969-8973 (2017) · Zbl 1404.92167
[160] Hébert-Dufresne, L.; Allard, A., Smeared phase transitions in percolation on real complex networks, Phys. Rev. Research, 1, Article 013009 pp. (2019)
[161] Newman, M. E.J., Properties of highly clustered networks, Phys. Rev. E, 68, Article 026121 pp. (2003)
[162] Serrano, M. A.; Boguñá, M., Clustering in complex networks. II. Percolation properties, Phys. Rev. E, 74, Article 056115 pp. (2006)
[163] Gleeson, J. P., Bond percolation on a class of clustered random networks, Phys. Rev. E, 80, Article 036107 pp. (2009)
[164] Graham, R. L.; Hell, P., On the history of the minimum spanning tree problem, IEEE Ann. Hist. Comput., 7, 43-57 (1985) · Zbl 0998.68003
[165] Cheriton, D.; Tarjan, R. E., Finding minimum spanning trees, SIAM J. Comput., 5, 724-742 (1976) · Zbl 0358.90069
[166] Dobrin, R.; Duxbury, P. M., Minimum spanning trees on random networks, Phys. Rev. Lett., 86, 5076-5079 (2001)
[167] Karrer, B.; Newman, M. E.J., Random graphs containing arbitrary distributions of subgraphs, Phys. Rev. E, 82, Article 066118 pp. (2010)
[168] Mann, P.; Smith, V. A.; Mitchell, J. B.O.; Dobson, S., Percolation in random graphs with higher-order clustering (2020), ArXiv preprint arXiv:2006.06744
[169] Ghoshal, G.; Zlatić, V.; Caldarelli, G.; Newman, M. E.J., Random hypergraphs and their applications, Phys. Rev. E, 79, Article 066118 pp. (2009)
[170] Derényi, I.; Palla, G.; Vicsek, T., Clique percolation in random networks, Phys. Rev. Lett., 94, Article 160202 pp. (2005)
[171] Palla, G.; Derényi, I.; Farkas, I.; Vicsek, T., Uncovering the overlapping community structure of complex networks in nature and society, Nature, 435, 814-818 (2005)
[172] Vázquez, A.; Moreno, Y., Resilience to damage of graphs with degree correlations, Phys. Rev. E, 67, Article 015101 pp. (2003)
[173] Goltsev, A. V.; Dorogovtsev, S. N.; Mendes, J. F.F., Percolation on correlated networks, Phys. Rev. E, 78, Article 051105 pp. (2008)
[174] Schmeltzer, C.; Soriano, J.; Sokolov, I. M.; Rüdiger, S., Percolation of spatially constrained Erdös-Rényi networks with degree correlations, Phys. Rev. E, 89, Article 012116 pp. (2014)
[175] Noh, J. D., Percolation transition in networks with degree-degree correlation, Phys. Rev. E, 76, Article 026116 pp. (2007)
[176] Mizutaka, S.; Hasegawa, T., Percolation on a maximally disassortative network, Europhys. Lett., 128, 4, 46003 (2020)
[177] Valdez, L. D.; Buono, C.; Braunstein, L. A.; Macri, P. A., Effect of degree correlations above the first shell on the percolation transition, Europhys. Lett., 96, 38001 (2011)
[178] Agliari, E.; Cioli, C.; Guadagnini, E., Percolation on correlated random networks, Phys. Rev. E, 84, Article 031120 pp. (2011)
[179] Schmeltzer, C.; Soriano, J.; Sokolov, I. M.; Rüdiger, S., Percolation of spatially constrained Erdös-Rényi networks with degree correlations, Phys. Rev. E, 89, Article 012116 pp. (2014)
[180] Allard, A.; Hébert-Dufresne, L.; Noël, P.-A.; Marceau, V.; Dubé, L. J., Bond percolation on a class of correlated and clustered random graphs, J. Phys. A: Math. Theor., 45, Article 405005 pp. (2012) · Zbl 1252.82058
[181] Allard, A.; Hébert-Dufresne, L.; Noël, P.-A.; Marceau, V.; Dubé, L. J., Exact solution of bond percolation on small arbitrary graphs, Europhys. Lett., 98, 16001 (2012)
[182] Dorogovtsev, S. N.; Mendes, J. F.F.; Samukhin, A. N., Giant strongly connected component of directed networks, Phys. Rev. E, 64, Article 025101 pp. (2001)
[183] Schwartz, N.; Cohen, R.; ben Avraham, D.; Barabási, A.-L.; Havlin, S., Percolation in directed scale-free networks, Phys. Rev. E, 66, Article 015104 pp. (2002)
[184] Boguñá, M.; Serrano, M. A., Generalized percolation in random directed networks, Phys. Rev. E, 72, Article 016106 pp. (2005)
[185] Ángeles Serrano, M.; De Los Rios, P., Interfaces and the edge percolation map of random directed networks, Phys. Rev. E, 76, Article 056121 pp. (2007)
[186] Gleeson, J. P., Mean size of avalanches on directed random networks with arbitrary degree distributions, Phys. Rev. E, 77, Article 057101 pp. (2008)
[187] Restrepo, J. G.; Ott, E.; Hunt, B. R., Weighted percolation on directed networks, Phys. Rev. Lett., 100, Article 058701 pp. (2008)
[188] van der Hoorn, P.; Litvak, N., Phase transitions for scaling of structural correlations in directed networks, Phys. Rev. E, 92, Article 022803 pp. (2015)
[189] Liu, X.; Pan, L.; Stanley, H. E.; Gao, J., Controllability of giant connected components in a directed network, Phys. Rev. E, 95, Article 042318 pp. (2017)
[190] Meyers, L. A.; Newman, M.; Pourbohloul, B., Predicting epidemics on directed contact networks, J. Theor. Biol., 240, 400-418 (2006), http://www.sciencedirect.com/science/article/pii/S0022519305004418 · Zbl 1447.92454
[191] Hoshen, J.; Kopelman, R., Percolation and cluster distribution. I. Cluster multiple labeling technique and critical concentration algorithm, Phys. Rev. B, 14, 3438-3445 (1976)
[192] Newman, M. E.J.; Ziff, R. M., Fast Monte Carlo algorithm for site or bond percolation, Phys. Rev. E, 64, Article 016706 pp. (2001)
[193] Dorogovtsev, S. N.; Goltsev, A. V.; Mendes, J. F.F., \(k\)-core organization of complex networks, Phys. Rev. Lett., 96, Article 040601 pp. (2006)
[194] Watts, D. J., A simple model of global cascades on random networks, Proc. Natl. Acad. Sci. USA, 99, 5766-5771 (2002), https://www.pnas.org/content/99/9/5766 · Zbl 1022.90001
[195] Liu, R.-R.; Wang, W.-X.; Lai, Y.-C.; Wang, B.-H., Cascading dynamics on random networks: Crossover in phase transition, Phys. Rev. E, 85, Article 026110 pp. (2012)
[196] Baxter, G. J.; Dorogovtsev, S. N.; Goltsev, A. V.; Mendes, J. F.F., Bootstrap percolation on complex networks, Phys. Rev. E, 82, Article 011103 pp. (2010)
[197] Yang, Y.; Wang, J.; Motter, A. E., Network observability transitions, Phys. Rev. Lett., 109, Article 258701 pp. (2012)
[198] Shang, Y.; Luo, W.; Xu, S., \(L\)-hop percolation on networks with arbitrary degree distributions and its applications, Phys. Rev. E, 84, Article 031113 pp. (2011)
[199] Li, M.; Lü, L.; Deng, Y.; Hu, M.-B.; Wang, H.; Medo, M.; Stanley, H. E., History-dependent percolation on multiplex networks, Natl. Sci. Rev., 7, 1296-1305 (2020)
[200] Hu, M.; Sun, Y.; Wang, D.; Lv, J.-P.; Deng, Y., History-dependent percolation in two dimensions, Phys. Rev. E, 102, Article 052121 pp. (2020)
[201] Achlioptas, D.; D’Souza, R. M.; Spencer, J., Explosive percolation in random networks, Science, 323, 1453-1455 (2009) · Zbl 1226.05221
[202] Friedman, E. J.; Landsberg, A. S., Construction and analysis of random networks with explosive percolation, Phys. Rev. Lett., 103, Article 255701 pp. (2009)
[203] da Costa, R. A.; Dorogovtsev, S. N.; Goltsev, A. V.; Mendes, J. F.F., Explosive percolation transition is actually continuous, Phys. Rev. Lett., 105, Article 255701 pp. (2010)
[204] D’Souza, R. M.; Mitzenmacher, M., Local cluster aggregation models of explosive percolation, Phys. Rev. Lett., 104, Article 195702 pp. (2010)
[205] Moreira, A. A.; Oliveira, E. A.; Reis, S. D.S.; Herrmann, H. J.; Andrade, J. S., Hamiltonian approach for explosive percolation, Phys. Rev. E, 81, Article 040101 pp. (2010)
[206] Boccaletti, S.; Almendral, J.; Guan, S.; Leyva, I.; Liu, Z.; Sendiña-Nadal, I.; Wang, Z.; Zou, Y., Explosive transitions in complex networks’ structure and dynamics: Percolation and synchronization, Phys. Rep., 660, 1-94 (2016), http://www.sciencedirect.com/science/article/pii/S0370157316303180 · Zbl 1359.34048
[207] López, E.; Parshani, R.; Cohen, R.; Carmi, S.; Havlin, S., Limited path percolation in complex networks, Phys. Rev. Lett., 99, Article 188701 pp. (2007)
[208] Dong, J.-Q.; Shen, Z.; Zhang, Y.; Huang, Z.-G.; Huang, L.; Chen, X., Finite-size scaling of clique percolation on two-dimensional moore lattices, Phys. Rev. E, 97, Article 052133 pp. (2018)
[209] Krause, S. M.; Danziger, M. M.; Zlatić, V., Color-avoiding percolation, Phys. Rev. E, 96, Article 022313 pp. (2017)
[210] Kadović, A.; Krause, S. M.; Caldarelli, G.; Zlatic, V., Bond and site color-avoiding percolation in scale-free networks, Phys. Rev. E, 98, Article 062308 pp. (2018)
[211] Seidman, S. B., Network structure and minimum degree, Soc. Networks, 5, 269-287 (1983), http://www.sciencedirect.com/science/article/pii/037887338390028X
[212] Bollobás, B., Graph Theory and Combinatorics: Proceedings of the Cambridge Combinatorial Conference in Honour of Paul Erdös, [Trinity College, Cambridge, 21-25 March 1983] (1984), Academic Press
[213] Pittel, B.; Spencer, J.; Wormald, N., Sudden emergence of a giant k-core in a random graph, J. Comb. Theory B, 67, 111-151 (1996), http://www.sciencedirect.com/science/article/pii/S0095895696900362 · Zbl 0860.05065
[214] Kong, Y.-X.; Shi, G.-Y.; Wu, R.-J.; Zhang, Y.-C., k-core: Theories and applications, Phys. Rep., 832, 1-32 (2019), http://www.sciencedirect.com/science/article/pii/S037015731930328X
[215] Chalupa, J.; Leath, P. L.; Reich, G. R., Bootstrap percolation on a Bethe lattice, J. Phys. C: Solid State Phys., 12, L31-L35 (1979)
[216] Schawe, H.; Hartmann, A. K., Large-deviation properties of the largest biconnected component for random graphs, Eur. Phys. J. B, 92, 73 (2019)
[217] Zhu, Y.; Chen, X., Revealing the phase transition behaviors of k-core percolation in random networks (2017), ArXiv preprint arXiv:1710.02959
[218] Kim, P.; Lee, D.-S.; Kahng, B., Phase transition in the biconnectivity of scale-free networks, Phys. Rev. E, 87, Article 022804 pp. (2013)
[219] Lee, D.; Jo, M.; Kahng, B., Critical behavior of \(k\)-core percolation: Numerical studies, Phys. Rev. E, 94, Article 062307 pp. (2016)
[220] Harris, A. B.; Schwarz, J. M., \( 1 / d\) expansion for \(k\)-core percolation, Phys. Rev. E, 72, Article 046123 pp. (2005)
[221] Farrow, C.; Shukla, P.; Duxbury, P., Dynamics of k-core percolation, J. Phys. A: Math. Theor., 40, F581 (2007) · Zbl 1178.82045
[222] Parisi, G.; Rizzo, T., \(k\)-core percolation in four dimensions, Phys. Rev. E, 78, Article 022101 pp. (2008)
[223] Rizzo, T., Fate of the hybrid transition of bootstrap percolation in physical dimension, Phys. Rev. Lett., 122, Article 108301 pp. (2019)
[224] Dorogovtsev, S.; Goltsev, A.; Mendes, J. F.F., K-core architecture and k-core percolation on complex networks, Physica D, 224, 7-19 (2006), http://www.sciencedirect.com/science/article/pii/S0167278906003617, Dynamics on Complex Networks and Applications · Zbl 1130.94024
[225] Goltsev, A. V.; Dorogovtsev, S. N.; Mendes, J. F.F., \(k\)-core (bootstrap) percolation on complex networks: Critical phenomena and nonlocal effects, Phys. Rev. E, 73, Article 056101 pp. (2006)
[226] Gleeson, J. P.; Melnik, S., Analytical results for bond percolation and \(k\)-core sizes on clustered networks, Phys. Rev. E, 80, Article 046121 pp. (2009)
[227] Bhat, U.; Shrestha, M.; Hébert-Dufresne, L., Exotic phase transitions of \(k\)-cores in clustered networks, Phys. Rev. E, 95, Article 012314 pp. (2017)
[228] Yuan, X.; Dai, Y.; Stanley, H. E.; Havlin, S., \(k\)-core percolation on complex networks: Comparing random, localized, and targeted attacks, Phys. Rev. E, 93, Article 062302 pp. (2016)
[229] Sellitto, M.; Biroli, G.; Toninelli, C., Facilitated spin models on Bethe lattice: Bootstrap percolation, mode-coupling transition and glassy dynamics, Europhys. Lett., 69, 496 (2005)
[230] Schwarz, J. M.; Liu, A. J.; Chayes, L., The onset of jamming as the sudden emergence of an infinite k-core cluster, Europhys. Lett., 73, 560 (2006)
[231] Alvarez-Hamelin, J. I.; Puglisi, A., Dynamical collision network in granular gases, Phys. Rev. E, 75, Article 051302 pp. (2007)
[232] Klimek, P.; Thurner, S.; Hanel, R., Pruning the tree of life: k-core percolation as selection mechanism, J. Theor. Biol, 256, 142-146 (2009), http://www.sciencedirect.com/science/article/pii/S0022519308004979 · Zbl 1400.92370
[233] Chatterjee, N.; Sinha, S., Understanding the mind of a worm: hierarchical network structure underlying nervous system function in C. elegans, (Banerjee, R.; Chakrabarti, B. K., Models of Brain and Mind. Models of Brain and Mind, Progress in Brain Research, vol. 168 (2007), Elsevier), 145-153, http://www.sciencedirect.com/science/article/pii/S0079612307680121
[234] Zhao, J.-H.; Zhou, H.-J.; Liu, Y.-Y., Inducing effect on the percolation transition in complex networks, Nat. Commun., 4, 1-6 (2013)
[235] Iwata, M.; Sasa, S.-I., Dynamics of k-core percolation in a random graph, J. Phys. A: Math. Theor., 42, Article 075005 pp. (2009) · Zbl 1157.82038
[236] Baxter, G. J.; Dorogovtsev, S. N.; Lee, K.-E.; Mendes, J. F.F.; Goltsev, A. V., Critical dynamics of the \(k\)-core pruning process, Phys. Rev. X, 5, Article 031017 pp. (2015)
[237] Wu, R.-J.; Kong, Y.-X.; yuan Shi, G.; Zhang, Y.-C., Using nonbacktracking expansion to analyze k-core pruning process (2018), ArXiv preprint arXiv:1811.04295
[238] Wu, R.-J.; Kong, Y.-X.; Shi, G.-Y.; Zhang, Y.-C., Analytical results of k-core pruning process on multi-layer networks (2018), ArXiv preprint arXiv:1812.11111
[239] Shi, G.-Y.; Wu, R.-J.; Kong, Y.-X.; Stanley, H. E.; Zhang, Y.-C., An analytical solution to the \(k\)-core pruning process (2018), ArXiv preprint arXiv:1810.08936
[240] Alvarez-Hamelin, J. I.; Dall’Asta, L.; Barrat, A.; Vespignani, A., K-core decomposition: a tool for the visualization of large scale networks, Adv. Neural Inf. Process. Syst., 18, 41 (2006)
[241] Carmi, S.; Havlin, S.; Kirkpatrick, S.; Shavitt, Y.; Shir, E., A model of internet topology using k-shell decomposition, Proc. Natl. Acad. Sci. USA, 104, 11150-11154 (2007), https://www.pnas.org/content/104/27/11150
[242] Kitsak, M.; Gallos, L. K.; Havlin, S.; Liljeros, F.; Muchnik, L.; Stanley, H. E.; Makse, H. A., Identification of influential spreaders in complex networks, Nat. Phys., 6, 888 (2010)
[243] Batagelj, V.; Zaversnik, M., An \(O ( m )\) algorithm for cores decomposition of networks, Adv. Data Anal. Classif., 5, 129-145 (2011) · Zbl 1284.05252
[244] Eidsaa, M.; Almaas, E., \(s\)-core network decomposition: A Generalization of \(k\)-core analysis to weighted networks, Phys. Rev. E, 88, Article 062819 pp. (2013)
[245] Lü, L.; Chen, D.; Ren, X.-L.; Zhang, Q.-M.; Zhang, Y.-C.; Zhou, T., Vital nodes identification in complex networks, Phys. Rep., 650, 1-63 (2016), http://www.sciencedirect.com/science/article/pii/S0370157316301570
[246] Branco, N., Probabilistic bootstrap percolation, J. Stat. Phys., 70, 1035-1044 (1993) · Zbl 0935.82528
[247] Cellai, D.; Lawlor, A.; Dawson, K. A.; Gleeson, J. P., Tricritical point in heterogeneous \(k\)-core percolation, Phys. Rev. Lett., 107, Article 175703 pp. (2011)
[248] Baxter, G. J.; Dorogovtsev, S. N.; Goltsev, A. V.; Mendes, J. F.F., Heterogeneous \(k\)-core versus bootstrap percolation on complex networks, Phys. Rev. E, 83, Article 051134 pp. (2011)
[249] Cellai, D.; Lawlor, A.; Dawson, K. A.; Gleeson, J. P., Critical phenomena in heterogeneous \(k\)-core percolation, Phys. Rev. E, 87, Article 022134 pp. (2013)
[250] Chae, H.; Yook, S.-H.; Kim, Y., Complete set of types of phase transition in generalized heterogeneous \(k\)-core percolation, Phys. Rev. E, 89, Article 052134 pp. (2014)
[251] Sellitto, M.; De Martino, D.; Caccioli, F.; Arenzon, J. J., Dynamic facilitation picture of a higher-order glass singularity, Phys. Rev. Lett., 105, Article 265704 pp. (2010)
[252] Cellai, D.; Gleeson, J. P., Singularities in ternary mixtures of k-core percolation, (Ghoshal, G.; Poncela-Casasnovas, J.; Tolksdorf, R., Complex Networks IV (2013), Springer Berlin Heidelberg: Springer Berlin Heidelberg Berlin, Heidelberg), 165-172
[253] Gleeson, J. P.; Cahalane, D. J., Seed size strongly affects cascades on random networks, Phys. Rev. E, 75, Article 056103 pp. (2007)
[254] Centola, D.; Eguíluz, V. M.; Macy, M. W., Cascade dynamics of complex propagation, Physica A, 374, 449-456 (2007)
[255] Galstyan, A.; Cohen, P., Cascading dynamics in modular networks, Phys. Rev. E, 75, Article 036109 pp. (2007)
[256] Gleeson, J. P., Cascades on correlated and modular random networks, Phys. Rev. E, 77, Article 046117 pp. (2008)
[257] Whitney, D. E., Dynamic theory of cascades on finite clustered random networks with a threshold rule, Phys. Rev. E, 82, Article 066110 pp. (2010)
[258] Hackett, A.; Melnik, S.; Gleeson, J. P., Cascades on a class of clustered random networks, Phys. Rev. E, 83, Article 056107 pp. (2011)
[259] Hackett, A.; Gleeson, J. P., Cascades on clique-based graphs, Phys. Rev. E, 87, Article 062801 pp. (2013)
[260] Shang, Y., Impact of self-healing capability on network robustness, Phys. Rev. E, 91, Article 042804 pp. (2015)
[261] Brummitt, C. D.; Lee, K.-M.; Goh, K.-I., Multiplexity-facilitated cascades in networks, Phys. Rev. E, 85, Article 045102 pp. (2012)
[262] Motter, A. E.; Lai, Y.-C., Cascade-based attacks on complex networks, Phys. Rev. E, 66, Article 065102 pp. (2002)
[263] Adler, J., Bootstrap percolation, Physica A, 171, 453-470 (1991), http://www.sciencedirect.com/science/article/pii/037843719190295N
[264] Di Muro, M. A.; Valdez, L. D.; Stanley, H. E.; Buldyrev, S. V.; Braunstein, L. A., Insights into bootstrap percolation: Its equivalence with k-core percolation and the giant component, Phys. Rev. E, 99, Article 022311 pp. (2019)
[265] Di Muro, M. A.; Buldyrev, S. V.; Braunstein, L. A., Reversible bootstrap percolation: Fake news and fact checking, Phys. Rev. E, 101, Article 042307 pp. (2020)
[266] Cerf, R.; Cirillo, E. N., Finite size scaling in three-dimensional bootstrap percolation, Ann. Probab., 27, 1837-1850 (1999) · Zbl 0960.60088
[267] Holroyd, A. E., Sharp metastability threshold for two-dimensional bootstrap percolation, Probab. Theory Rel., 125, 195-224 (2003) · Zbl 1042.60065
[268] Holroyd, A., The metastability threshold for modified bootstrap percolation in \(d\) dimensions, Electron. J. Probab., 11, 418-433 (2006) · Zbl 1112.60080
[269] Balogh, J.; Bollobás, B., Bootstrap percolation on the hypercube, Probab. Theory Rel., 134, 624-648 (2006) · Zbl 1087.60068
[270] Balogh, J.; Peres, Y.; Pete, G., Bootstrap percolation on infinite trees and non-amenable groups, Combin. Probab. Comput., 15, 715-730 (2006) · Zbl 1102.60086
[271] Balogh, J.; Pittel, B. G., Bootstrap percolation on the random regular graph, Random Struct. Algorithms, 30, 257-286 (2007), https://onlinelibrary.wiley.com/doi/abs/10.1002/rsa.20158 · Zbl 1106.60076
[272] Fontes, L. R.; Schonmann, R. H., Bootstrap percolation on homogeneous trees has 2 phase transitions, J. Stat. Phys., 132, 839-861 (2008) · Zbl 1158.82007
[273] Castellano, C.; Fortunato, S.; Loreto, V., Statistical physics of social dynamics, Rev. Mod. Phys., 81, 591-646 (2009)
[274] Liu, Y.-Y.; Barabási, A.-L., Control principles of complex systems, Rev. Mod. Phys., 88, Article 035006 pp. (2016)
[275] Bauer, M.; Golinelli, O., Core percolation in random graphs: a critical phenomena analysis, Eur. Phys. J. B, 24, 339-352 (2001)
[276] Catanzaro, M.; Pastor-Satorras, R., Analytic solution of a static scale-free network model, Eur. Phys. J. B, 44, 241-248 (2005)
[277] Azimi-Tafreshi, N.; Osat, S.; Dorogovtsev, S. N., Generalization of core percolation on complex networks, Phys. Rev. E, 99, Article 022312 pp. (2019)
[278] West, D. B., Introduction to Graph Theory (1996), Prentice hall: Prentice hall Upper Saddle River, NJ · Zbl 0845.05001
[279] Holm, J.; de Lichtenberg, K.; Thorup, M., Poly-logarithmic deterministic fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity, J. ACM, 48, 723-760 (2001) · Zbl 1127.68408
[280] Morone, F.; Makse, H. A., Influence maximization in complex networks through optimal percolation, Nature, 524, 65-68 (2015)
[281] Tishby, I.; Biham, O.; Kühn, R.; Katzav, E., Statistical analysis of articulation points in configuration model networks, Phys. Rev. E, 98, Article 062301 pp. (2018)
[282] Wu, A.-K.; Tian, L.; Liu, Y.-Y., Bridges in complex networks, Phys. Rev. E, 97, Article 012307 pp. (2018)
[283] Krause, S. M.; Danziger, M. M.; Zlatić, V., Hidden connectivity in networks with vulnerable classes of nodes, Phys. Rev. X, 6, Article 041022 pp. (2016)
[284] Molontay, R.; Varga, K., On the complexity of color-avoiding site and bond percolation, (Catania, B.; Královič, R.; Nawrocki, J.; Pighizzini, G., SOFSEM 2019: Theory and Practice of Computer Science (2019), Springer International Publishing: Springer International Publishing Cham), 354-367 · Zbl 1444.68150
[285] Kryven, I., Bond percolation in coloured and multiplex networks, Nat. Commun., 10, 404 (2019)
[286] Cho, Y. S.; Lee, J. S.; Herrmann, H. J.; Kahng, B., Hybrid percolation transition in cluster merging processes: Continuously varying exponents, Phys. Rev. Lett., 116, Article 025701 pp. (2016)
[287] Lee, D.; Cho, Y. S.; Kahng, B., Diverse types of percolation transitions, J. Stat. Mech., 2016, Article 124002 pp. (2016) · Zbl 07231948
[288] Lee, D.; Choi, W.; Kertész, J.; Kahng, B., Universal mechanism for hybrid percolation transitions, Sci. Rep., 7, 5723 (2017)
[289] Lee, D.; Kahng, B.; Cho, Y. S.; Goh, K.-I.; Lee, D.-S., Recent advances of percolation theory in complex networks, J. Korean Phys. Soc., 73, 152-164 (2018)
[290] Park, J.; Yi, S.; Choi, K.; Lee, D.; Kahng, B., Interevent time distribution, burst, and hybrid percolation transition, Chaos, 29, Article 091102 pp. (2019) · Zbl 1423.90040
[291] Park, J.; Yi, S.; Kahng, B., Hysteresis and criticality in hybrid percolation transitions, Chaos, 30, Article 051102 pp. (2020)
[292] Baxter, G. J.; Dorogovtsev, S. N.; Goltsev, A. V.; Mendes, J. F.F., Avalanche collapse of interdependent networks, Phys. Rev. Lett., 109, Article 248701 pp. (2012)
[293] Grassberger, P., Percolation transitions in the survival of interdependent agents on multiplex networks, catastrophic cascades, and solid-on-solid surface growth, Phys. Rev. E, 91, Article 062806 pp. (2015)
[294] Son, S.-W.; Grassberger, P.; Paczuski, M., Percolation transitions are not always sharpened by making networks interdependent, Phys. Rev. Lett., 107, Article 195702 pp. (2011)
[295] Son, S.-W.; Bizhani, G.; Christensen, C.; Grassberger, P.; Paczuski, M., Percolation theory on interdependent networks based on epidemic spreading, Europhys. Lett., 97, 16006 (2012)
[296] Li, M.; Wang, B.-H., Percolation on networks with dependence links, Chin. Phys. B, 23, Article 076402 pp. (2014)
[297] Feng, L.; Monterola, C. P.; Hu, Y., The simplified self-consistent probabilities method for percolation and its application to interdependent networks, New J. Phys., 17, 6, Article 063025 pp. (2015)
[298] Zhou, D.; Bashan, A.; Cohen, R.; Berezin, Y.; Shnerb, N.; Havlin, S., Simultaneous first- and second-order percolation transitions in interdependent networks, Phys. Rev. E, 90, Article 012803 pp. (2014)
[299] Bashan, A.; Berezin, Y.; Buldyrev, S. V.; Havlin, S., The extreme vulnerability of interdependent spatially embedded networks, Nat. Phys., 9, 667-672 (2013)
[300] Li, W.; Bashan, A.; Buldyrev, S. V.; Stanley, H. E.; Havlin, S., Cascading failures in interdependent lattice networks: The critical role of the length of dependency links, Phys. Rev. Lett., 108, Article 228702 pp. (2012)
[301] Lowinger, S.; Cwilich, G. A.; Buldyrev, S. V., Interdependent lattice networks in high dimensions, Phys. Rev. E, 94, Article 052306 pp. (2016)
[302] Hackett, A.; Cellai, D.; Gómez, S.; Arenas, A.; Gleeson, J. P., Bond percolation on multiplex networks, Phys. Rev. X, 6, Article 021002 pp. (2016)
[303] Nogawa, T.; Hasegawa, T., Monte Carlo Simulation study of the two-stage percolation transition in enhanced binary trees, J. Phys. A: Math. Theor., 42, Article 145001 pp. (2009) · Zbl 1160.82327
[304] Bianconi, G.; Dorogovtsev, S. N., Multiple percolation transitions in a configuration model of a network of networks, Phys. Rev. E, 89, Article 062814 pp. (2014)
[305] Wu, C.; Ji, S.; Zhang, R.; Chen, L.; Chen, J.; Li, X.; Hu, Y., Multiple hybrid phase transition: Bootstrap percolation on complex networks with communities, Europhys. Lett., 107, 48001 (2014)
[306] Liu, R.-R.; Eisenberg, D. A.; Seager, T. P.; Lai, Y.-C., The “weak” interdependence of infrastructure systems produces mixed percolation transitions in multilayer networks, Sci. Rep., 8, 2111 (2018)
[307] Kryven, I.; Bianconi, G., Enhancing the robustness of a multiplex network leads to multiple discontinuous percolation transitions, Phys. Rev. E, 100, Article 020301 pp. (2019)
[308] Oh, S. M.; Son, S. W.; Kahng, B., Discontinuous percolation transitions in growing networks, J. Stat. Mech., 2019, Article 083502 pp. (2019) · Zbl 1457.82171
[309] Azimi-Tafreshi, N.; Gómez-Gardeñes, J.; Dorogovtsev, S. N., \(k\)-core percolation on multiplex networks, Phys. Rev. E, 90, Article 032816 pp. (2014)
[310] Baxter, G. J.; Dorogovtsev, S. N.; Mendes, J. F.F.; Cellai, D., Weak percolation on multiplex networks, Phys. Rev. E, 89, Article 042801 pp. (2014)
[311] Wang, Z.; Zhou, D.; Hu, Y., Group percolation in interdependent networks, Phys. Rev. E, 97, Article 032306 pp. (2018)
[312] Schneider, C. M.; Araújo, N. A.M.; Herrmann, H. J., Algorithm to determine the percolation largest component in interconnected networks, Phys. Rev. E, 87, Article 043302 pp. (2013)
[313] Hwang, S.; Choi, S.; Lee, D.; Kahng, B., Efficient algorithm to compute mutually connected components in interdependent networks, Phys. Rev. E, 91, Article 022814 pp. (2015)
[314] Lee, D.; Choi, S.; Stippinger, M.; Kertész, J.; Kahng, B., Hybrid phase transition into an absorbing state: Percolation and avalanches, Phys. Rev. E, 93, Article 042109 pp. (2016)
[315] Stippinger, M.; Kertész, J., Universality and scaling laws in the cascading failure model with healing, Phys. Rev. E, 98, Article 042303 pp. (2018)
[316] Leath, P. L., Cluster size and boundary distribution near percolation threshold, Phys. Rev. B, 14, 5046-5055 (1976)
[317] Kivelä, M.; Arenas, A.; Barthelemy, M.; Gleeson, J. P.; Moreno, Y.; Porter, M. A., Multilayer networks, J. Complex Netw., 2, 203-271 (2014)
[318] Lee, K.-M.; Min, B.; Goh, K.-I., Towards real-world complexity: an introduction to multiplex networks, Eur. Phys. J. B, 88 (2015)
[319] Leicht, E. A.; D’Souza, R. M., Percolation on interacting networks (2009), ArXiv preprint arXiv:0907.0894
[320] Nagler, J.; Tiessen, T.; Gutch, H. W., Continuous percolation with discontinuities, Phys. Rev. X, 2, Article 031009 pp. (2012)
[321] Nagler, J.; Levina, A.; Timme, M., Impact of single links in competitive percolation, Nat. Phys., 7, 265-270 (2011)
[322] Riordan, O.; Warnke, L., Achlioptas processes are not always self-averaging, Phys. Rev. E, 86, Article 011129 pp. (2012)
[323] Bohman, T.; Frieze, A.; Wormald, N. C., Avoidance of a giant component in half the edge set of a random graph, Random Struct. Algorithms, 25, 432-449 (2004), https://onlinelibrary.wiley.com/doi/abs/10.1002/rsa.20038
[324] Riordan, O.; Warnke, L., Explosive percolation is continuous, Science, 333, 322-324 (2011)
[325] Chen, W.; D’Souza, R. M., Explosive percolation with multiple giant components, Phys. Rev. Lett., 106, Article 115701 pp. (2011)
[326] Chen, W.; Zheng, Z.; D’Souza, R. M., Deriving an underlying mechanism for discontinuous percolation, Europhys. Lett., 100, 66006 (2012)
[327] Schrenk, K. J.; Felder, A.; Deflorin, S.; Araújo, N. A.M.; D’Souza, R. M.; Herrmann, H. J., Bohman-Frieze-Wormald model on the lattice, yielding a discontinuous percolation transition, Phys. Rev. E, 85, Article 031103 pp. (2012)
[328] Zhang, Y.; Wei, W.; Guo, B.; Zhang, R.; Zheng, Z., Formation mechanism and size features of multiple giant clusters in generic percolation processes, Phys. Rev. E, 86, Article 051103 pp. (2012)
[329] Chen, W.; Cheng, X.; Zheng, Z.; Chung, N. N.; D’Souza, R. M.; Nagler, J., Unstable supercritical discontinuous percolation transitions, Phys. Rev. E, 88, Article 042152 pp. (2013)
[330] Chen, W.; Schröder, M.; D’Souza, R. M.; Sornette, D.; Nagler, J., Microtransition cascades to percolation, Phys. Rev. Lett., 112, Article 155701 pp. (2014)
[331] Cho, Y. S.; Kahng, B., Suppression effect on explosive percolation, Phys. Rev. Lett., 107, Article 275703 pp. (2011)
[332] Li, J.; Östling, M., Corrected finite-size scaling in percolation, Phys. Rev. E, 86, Article 040105 pp. (2012)
[333] Yi, S. D.; Jo, W. S.; Kim, B. J.; Son, S.-W., Percolation properties of growing networks under an Achlioptas process, Europhys. Lett., 103, 26004 (2013)
[334] da Costa, R. A.; Dorogovtsev, S. N.; Goltsev, A. V.; Mendes, J. F.F., Critical exponents of the explosive percolation transition, Phys. Rev. E, 89, Article 042148 pp. (2014)
[335] da Costa, R. A.; Dorogovtsev, S. N.; Goltsev, A. V.; Mendes, J. F.F., Solution of the explosive percolation quest: Scaling functions and critical exponents, Phys. Rev. E, 90, Article 022145 pp. (2014)
[336] da Costa, R. A.; Dorogovtsev, S. N.; Goltsev, A. V.; Mendes, J. F.F., Solution of the explosive percolation quest. II. Infinite-order transition produced by the initial distributions of clusters, Phys. Rev. E, 91, Article 032140 pp. (2015)
[337] da Costa, R. A.; Dorogovtsev, S. N.; Goltsev, A. V.; Mendes, J. F.F., Inverting the achlioptas rule for explosive percolation, Phys. Rev. E, 91, Article 042130 pp. (2015)
[338] Cho, Y. S.; Kahng, B., Discontinuous percolation transitions in real physical systems, Phys. Rev. E, 84, Article 050102 pp. (2011)
[339] Cho, Y. S.; Kim, Y. W.; Kahng, B., Discontinuous percolation in diffusion-limited cluster aggregation, J. Stat. Mech., 2012, P10004 (2012) · Zbl 1456.82457
[340] Ziff, R. M., Getting the jump on explosive percolation, Science, 339, 1159-1160 (2013), https://science.sciencemag.org/content/339/6124/1159
[341] Cho, Y. S.; Hwang, S.; Herrmann, H. J.; Kahng, B., Avoiding a spanning cluster in percolation models, Science, 339, 1185-1187 (2013), https://science.sciencemag.org/content/339/6124/1185
[342] Araújo, N. A.M.; Andrade, J. S.; Ziff, R. M.; Herrmann, H. J., Tricritical point in explosive percolation, Phys. Rev. Lett., 106, Article 095703 pp. (2011)
[343] Cao, L.; Schwarz, J. M., Correlated percolation and tricriticality, Phys. Rev. E, 86, Article 061131 pp. (2012)
[344] Fan, J.; Liu, M.; Li, L.; Chen, X., Continuous percolation phase transitions of random networks under a generalized Achlioptas process, Phys. Rev. E, 85, Article 061110 pp. (2012)
[345] D’Souza, R. M.; Nagler, J., Anomalous critical and supercritical phenomena in explosive percolation, Nat. Phys., 11, 531-538 (2015)
[346] Waagen, A.; D’souza, R. M., Given enough choice, simple local rules percolate discontinuously, Eur. Phys. J. B, 87, 304 (2014)
[347] Grassberger, P.; Christensen, C.; Bizhani, G.; Son, S.-W.; Paczuski, M., Explosive percolation is continuous, but with unusual finite size behavior, Phys. Rev. Lett., 106, Article 225701 pp. (2011)
[348] Bastas, N.; Kosmidis, K.; Argyrakis, P., Explosive site percolation and finite-size hysteresis, Phys. Rev. E, 84, Article 066112 pp. (2011)
[349] Cho, Y. S.; Kim, S. W.; Noh, J. D.; Kahng, B.; Kim, D., Finite-size scaling theory for explosive percolation transitions, Phys. Rev. E, 82, Article 042102 pp. (2010)
[350] Radicchi, F.; Fortunato, S., Explosive percolation: A numerical analysis, Phys. Rev. E, 81, Article 036110 pp. (2010)
[351] Lee, H. K.; Kim, B. J.; Park, H., Continuity of the explosive percolation transition, Phys. Rev. E, 84, Article 020101 pp. (2011)
[352] Tian, L.; Shi, D.-N., The nature of explosive percolation phase transition, Phys. Lett. A, 376, 286-289 (2012) · Zbl 1255.82050
[353] Newman, M. E.J., The structure and function of complex networks, SIAM Rev., 45, 167-256 (2003) · Zbl 1029.68010
[354] Barabási, A.-L.; Albert, R.; Jeong, H., Mean-field theory for scale-free random networks, Physica A, 272, 173-187 (1999)
[355] Dorogovtsev, S. N.; Mendes, J. F.F.; Samukhin, A. N., Anomalous percolation properties of growing networks, Phys. Rev. E, 64, Article 066110 pp. (2001)
[356] Weaver, I. S., Preferential attachment in randomly grown networks, Physica A, 439, 85-92 (2015) · Zbl 1400.82020
[357] Kim, J.; Krapivsky, P. L.; Kahng, B.; Redner, S., Infinite-order percolation and giant fluctuations in a protein interaction network, Phys. Rev. E, 66, Article 055101 pp. (2002)
[358] Bollobás, B.; Janson, S.; Riordan, O., The phase transition in the uniformly grown random graph has infinite order, Random Struct. Algorithms, 26, 1-36 (2004) · Zbl 1063.05121
[359] Krapivsky, P. L.; Derrida, B., Universal properties of growing networks, Physica A, 340, 714-724 (2004)
[360] Berezinskii, V. L., Destruction of long-range order in one-dimensional and two-dimensional systems having a continuous symmetry group I. Classical systems, Sov. Phys. JETP, 32, 493 (1971)
[361] Kosterlitz, J. M.; Thouless, D. J., Long range order and metastability in two dimensional solids and superfluids. (Application of dislocation theory), J. Phys. C: Solid State Phys., 5, L124-L126 (1972)
[362] Hu, H.; Deng, Y.; Blöte, H. W.J., Berezinskii-Kosterlitz-Thouless-like percolation transitions in the two-dimensional \(\mathit{XY}\) model, Phys. Rev. E, 83, Article 011124 pp. (2011)
[363] Hasegawa, T.; Nogawa, T.; Nemoto, K., Profile and scaling of the fractal exponent of percolations in complex networks, Europhys. Lett., 104, 16006 (2013)
[364] Wu, F.; Kärenlampi, P. P., Phase transition in a growing network, J. Complex Netw., 6, 788-799 (2017)
[365] Dorogovtsev, S. N., Renormalization group for evolving networks, Phys. Rev. E, 67, Article 045102 pp. (2003)
[366] Dorogovtsev, S. N.; Mendes, J. F.F.; Samukhin, A. N., Structure of growing networks with preferential linking, Phys. Rev. Lett., 85, 4633-4636 (2000)
[367] Zen, A.; Kabakçıoğlu, A.; Stella, A. L., Percolation transition in a dynamically clustered network, Phys. Rev. E, 76, Article 026110 pp. (2007)
[368] Vijayaraghavan, V. S.; Noël, P.-A.; Waagen, A.; D’Souza, R. M., Growth dominates choice in network percolation, Phys. Rev. E, 88, Article 032141 pp. (2013)
[369] Oh, S. M.; Son, S. W.; Kahng, B., Explosive percolation transitions in growing networks, Phys. Rev. E, 93, Article 032316 pp. (2016)
[370] Oh, S. M.; Son, S. W.; Kahng, B., Suppression effect on the Berezinskii-Kosterlitz-Thouless transition in growing networks, Phys. Rev. E, 98, Article 060301 pp. (2018)
[371] Berker, A. N.; Hinczewski, M.; Netz, R. R., Critical percolation phase and thermal Berezinskii-Kosterlitz-Thouless transition in a scale-free network with short-range and long-range random bonds, Phys. Rev. E, 80, Article 041118 pp. (2009)
[372] Boettcher, S.; Singh, V.; Ziff, R. M., Ordinary percolation with discontinuous transitions, Nat. Commun., 3 (2012)
[373] Lancaster, D., Cluster growth in two growing network models, J. Phys. A: Math. Gen., 35, 1179-1194 (2002) · Zbl 1032.91709
[374] Kullmann, L.; Kertész, J., Preferential growth: Exact solution of the time-dependent distributions, Phys. Rev. E, 63, Article 051112 pp. (2001)
[375] Krapivsky, P. L.; Redner, S., Organization of growing random networks, Phys. Rev. E, 63, Article 066123 pp. (2001)
[376] Coulomb, S.; Bauer, M., Asymmetric evolving random networks, Eur. Phys. J. B, 35, 377-389 (2003)
[377] Hasegawa, T.; Nemoto, K., Critical phase of bond percolation on growing networks, Phys. Rev. E, 81, Article 051105 pp. (2010)
[378] Bhat, U.; Krapivsky, P. L.; Lambiotte, R.; Redner, S., Densification and structural transitions in networks that grow by node copying, Phys. Rev. E, 94, Article 062302 pp. (2016)
[379] Lambiotte, R.; Krapivsky, P. L.; Bhat, U.; Redner, S., Structural transitions in densifying networks, Phys. Rev. Lett., 117, Article 218301 pp. (2016)
[380] Shao, J.; Buldyrev, S. V.; Cohen, R.; Kitsak, M.; Havlin, S.; Stanley, H. E., Fractal boundaries of complex networks, Europhys. Lett., 84, 48004 (2008)
[381] Kalisky, T.; Cohen, R.; Mokryn, O.; Dolev, D.; Shavitt, Y.; Havlin, S., Tomography of scale-free networks and shortest path trees, Phys. Rev. E, 74, Article 066108 pp. (2006)
[382] Newman, M. E.J., Scientific collaboration networks. I. Network construction and fundamental results, Phys. Rev. E, 64, Article 016131 pp. (2001)
[383] Newman, M. E.J., Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality, Phys. Rev. E, 64, Article 016132 pp. (2001)
[384] Cohen, R.; Havlin, S., Scale-free networks are ultrasmall, Phys. Rev. Lett., 90, Article 058701 pp. (2003)
[385] Dorogovtsev, S.; Mendes, J. F.F.; Samukhin, A., Metric structure of random networks, Nucl. Phys. B, 653, 307-338 (2003), http://www.sciencedirect.com/science/article/pii/S0550321302011197 · Zbl 1010.05073
[386] Shao, J.; Buldyrev, S. V.; Braunstein, L. A.; Havlin, S.; Stanley, H. E., Structure of shells in complex networks, Phys. Rev. E, 80, Article 036105 pp. (2009)
[387] Yuan, X.; Shao, S.; Stanley, H. E.; Havlin, S., How breadth of degree distribution influences network robustness: Comparing localized and random attacks, Phys. Rev. E, 92, Article 032122 pp. (2015)
[388] Lee, D. S.; Rieger, H., Maximum flow and topological structure of complex networks, Europhys. Lett., 73, 471-477 (2006)
[389] Dong, G.; Fan, J.; Shekhtman, L. M.; Shai, S.; Du, R.; Tian, L.; Chen, X.; Stanley, H. E.; Havlin, S., Resilience of networks with community structure behaves as if under an external field, Proc. Natl. Acad. Sci. USA, 115, 6911-6915 (2018)
[390] Newman, M. E.J., Mixing patterns in networks, Phys. Rev. E, 67, Article 026126 pp. (2003)
[391] Gallos, L. K.; Cohen, R.; Argyrakis, P.; Bunde, A.; Havlin, S., Stability and topology of scale-free networks under attack and defense strategies, Phys. Rev. Lett., 94, Article 188701 pp. (2005)
[392] Hooyberghs, H.; Van Schaeybroeck, B.; Moreira, A. A.; Andrade, J. S.; Herrmann, H. J.; Indekeu, J. O., Biased percolation on scale-free networks, Phys. Rev. E, 81, Article 011102 pp. (2010)
[393] Hasegawa, T.; Nemoto, K., Hierarchical scale-free network is fragile against random failure, Phys. Rev. E, 88, Article 062807 pp. (2013)
[394] Paul, G.; Cohen, R.; Sreenivasan, S.; Havlin, S.; Stanley, H. E., Graph partitioning induced phase transitions, Phys. Rev. Lett., 99, Article 115701 pp. (2007)
[395] Valente, A. X.C. N.; Sarkar, A.; Stone, H. A., Two-peak and three-peak optimal complex networks, Phys. Rev. Lett., 92, Article 118702 pp. (2004)
[396] Srivastava, A.; Mitra, B.; Ganguly, N.; Peruani, F., Correlations in complex networks under attack, Phys. Rev. E, 86, Article 036106 pp. (2012)
[397] Peixoto, T. P.; Bornholdt, S., Evolution of robust network topologies: Emergence of central backbones, Phys. Rev. Lett., 109, Article 118703 pp. (2012)
[398] Huang, X.; Gao, J.; Buldyrev, S. V.; Havlin, S.; Stanley, H. E., Robustness of interdependent networks under targeted attack, Phys. Rev. E, 83, Article 065101 pp. (2011)
[399] Schneider, C. M.; Moreira, A. A.; Andrade, J. S.; Havlin, S.; Herrmann, H. J., Mitigation of malicious attacks on networks, Proc. Natl. Acad. Sci. USA, 108, 3838-3841 (2011)
[400] Herrmann, H. J.; Schneider, C. M.; Moreira, A. A.; Jr., J. S.A.; Havlin, S., Onion-like network topology enhances robustness against malicious attacks, J. Stat. Mech., 2011, P01027 (2011) · Zbl 07230366
[401] Tanizawa, T.; Havlin, S.; Stanley, H. E., Robustness of onionlike correlated networks against targeted attacks, Phys. Rev. E, 85, Article 046109 pp. (2012)
[402] Lee, H. K.; Shim, P.-S.; Noh, J. D., Epidemic threshold of the susceptible-infected-susceptible model on complex networks, Phys. Rev. E, 87, Article 062812 pp. (2013)
[403] Caligiuri, A.; Castellano, C., Degree-ordered-percolation on uncorrelated networks, J. Stat. Mech., 2020, Article 113401 pp. (2020) · Zbl 1459.82115
[404] Shao, S.; Huang, X.; Stanley, H. E.; Havlin, S., Percolation of localized attack on complex networks, New J. Phys., 17, Article 023049 pp. (2015)
[405] Berezin, Y.; Bashan, A.; Danziger, M. M.; Li, D.; Havlin, S., Localized attacks on spatially embedded networks with dependencies, Sci. Rep., 5, Article 8943 pp. (2015)
[406] Dong, G.; Du, R.; Hao, H.; Tian, L., Modified localized attack on complex network, Europhys. Lett., 113, 28002 (2016)
[407] Vaknin, D.; Danziger, M. M.; Havlin, S., Spreading of localized attacks in spatial multiplex networks, New J. Phys., 19, Article 073037 pp. (2017)
[408] Dong, G.; Xiao, H.; Wang, F.; Du, R.; Shao, S.; Tian, L.; Stanley, H. E.; Havlin, S., Localized attack on networks with clustering, New J. Phys., 21, Article 013014 pp. (2019)
[409] McAndrew, T. C.; Danforth, C. M.; Bagrow, J. P., Robustness of spatial micronetworks, Phys. Rev. E, 91, Article 042813 pp. (2015)
[410] Almeira, N.; Billoni, O. V.; Perotti, J. I., Scaling of percolation transitions on Erdös-Rényi networks under centrality-based attacks, Phys. Rev. E, 101, Article 012306 pp. (2020)
[411] Bianconi, G., Fluctuations in percolation of sparse complex networks, Phys. Rev. E, 96, Article 012302 pp. (2017)
[412] Coghi, F.; Radicchi, F.; Bianconi, G., Controlling the uncertain response of real multiplex networks to random damage, Phys. Rev. E, 98, Article 062317 pp. (2018)
[413] Kitsak, M.; Ganin, A. A.; Eisenberg, D. A.; Krapivsky, P. L.; Krioukov, D.; Alderson, D. L.; Linkov, I., Stability of a giant connected component in a complex network, Phys. Rev. E, 97, Article 012309 pp. (2018)
[414] Bianconi, G., Rare events and discontinuous percolation transitions, Phys. Rev. E, 97, Article 022314 pp. (2018)
[415] Bianconi, G., Large deviation theory of percolation on multiplex networks, J. Stat. Mech., 2019, Article 023405 pp. (2019)
[416] López, E.; Braunstein, L. A., Disorder-induced limited path percolation, Europhys. Lett., 97, 66001 (2012)
[417] Cuquet, M.; Calsamiglia, J., Limited-path-length entanglement percolation in quantum complex networks, Phys. Rev. A, 83, Article 032319 pp. (2011)
[418] Zhou, D.; Stanley, H. E.; D’Agostino, G.; Scala, A., Assortativity decreases the robustness of interdependent networks, Phys. Rev. E, 86, Article 066103 pp. (2012)
[419] Huang, X.; Shao, S.; Wang, H.; Buldyrev, S. V.; Havlin, S.; Stanley, H. E., The robustness of interdependent clustered networks, Europhys. Lett., 101, 18002 (2012)
[420] Liu, X.; Stanley, H. E.; Gao, J., Breakdown of interdependent directed networks, Proc. Natl. Acad. Sci. USA, 113, 1138-1143 (2016)
[421] Dong, G.; Gao, J.; Tian, L.; Du, R.; He, Y., Percolation of partially interdependent networks under targeted attack, Phys. Rev. E, 85, Article 016112 pp. (2012)
[422] Zhou, D.; Gao, J.; Stanley, H. E.; Havlin, S., Percolation of partially interdependent scale-free networks, Phys. Rev. E, 87, Article 052812 pp. (2013)
[423] Buldyrev, S. V.; Shere, N. W.; Cwilich, G. A., Interdependent networks with identical degrees of mutually dependent nodes, Phys. Rev. E, 83, Article 016112 pp. (2011)
[424] Min, B.; Yi, S. D.; Lee, K.-M.; Goh, K.-I., Network robustness of multiplex networks with interlayer degree correlations, Phys. Rev. E, 89, Article 042811 pp. (2014)
[425] Parshani, R.; Rozenblat, C.; Ietri, D.; Ducruet, C.; Havlin, S., Inter-similarity between coupled networks, Europhys. Lett., 92, 68002 (2010)
[426] Hu, Y.; Zhou, D.; Zhang, R.; Han, Z.; Rozenblat, C.; Havlin, S., Percolation of interdependent networks with intersimilarity, Phys. Rev. E, 88, Article 052805 pp. (2013)
[427] Cellai, D.; López, E.; Zhou, J.; Gleeson, J. P.; Bianconi, G., Percolation in multiplex networks with overlap, Phys. Rev. E, 88, Article 052811 pp. (2013)
[428] Li, M.; Liu, R.-R.; Jia, C.-X.; Wang, B.-H., Critical effects of overlapping of connectivity and dependence links on percolation of networks, New J. Phys., 15, Article 093013 pp. (2013)
[429] Valdez, L. D.; Macri, P. A.; Stanley, H. E.; Braunstein, L. A., Triple point in correlated interdependent networks, Phys. Rev. E, 88, Article 050803 pp. (2013)
[430] Liu, R.-R.; Li, M.; Jia, C.-X., Cascading failures in coupled networks: The critical role of node-coupling strength across networks, Sci. Rep., 6, 35352 (2016)
[431] Kong, L.-W.; Li, M.; Liu, R.-R.; Wang, B.-H., Percolation on networks with weak and heterogeneous dependency, Phys. Rev. E, 95, Article 032301 pp. (2017)
[432] Liu, R.-R.; Jia, C.-X.; Lai, Y.-C., Asymmetry in interdependence makes a multilayer system more robust against cascading failures, Phys. Rev. E, 100, Article 052306 pp. (2019)
[433] Liu, R.-R.; Li, M.; Jia, C.-X.; Wang, B.-H., Cascading failures in coupled networks with both inner-dependency and inter-dependency links, Sci. Rep., 6, 25294 (2016)
[434] Shao, J.; Buldyrev, S. V.; Havlin, S.; Stanley, H. E., Cascade of failures in coupled network systems with multiple support-dependence relations, Phys. Rev. E, 83, Article 036116 pp. (2011)
[435] Bashan, A.; Parshani, R.; Havlin, S., Percolation in networks composed of connectivity and dependency links, Phys. Rev. E, 83, Article 051127 pp. (2011)
[436] Bashan, A.; Havlin, S., The combined effect of connectivity and dependency links on percolation of networks, J. Stat. Phys., 145, 686-695 (2011) · Zbl 1231.82027
[437] Wang, H.; Li, M.; Deng, L.; Wang, B.-H., Percolation on networks with conditional dependence group, PLoS ONE, 10, Article e0126674 pp. (2015)
[438] Wang, H.; Li, M.; Deng, L.; Wang, B.-H., Robustness of networks with assortative dependence groups, Physica A, 502, 195-200 (2018)
[439] Li, M.; Liu, R.-R.; Jia, C.-X.; Wang, B.-H., Cascading failures on networks with asymmetric dependence, Europhys. Lett., 108, 56002 (2014)
[440] Gao, J.; Buldyrev, S. V.; Havlin, S.; Stanley, H. E., Robustness of a network of networks, Phys. Rev. Lett., 107, Article 195701 pp. (2011)
[441] Gao, J.; Buldyrev, S. V.; Stanley, H. E.; Havlin, S., Networks formed from interdependent networks, Nat. Phys., 8, 40-48 (2012)
[442] Gao, J.; Buldyrev, S. V.; Stanley, H. E.; Xu, X.; Havlin, S., Percolation of a general network of networks, Phys. Rev. E, 88, Article 062816 pp. (2013)
[443] Gao, J.; Li, D.; Havlin, S., From a single network to a network of networks, Natl. Sci. Rev., 1, 346-356 (2014)
[444] Networks of Networks: The Last Frontier of Complexity (2014), Springer International Publishing, https://www.ebook.de/de/product/21612217/networks_of_networks_the_last_frontier_of_complexity.html
[445] Havlin, S.; Kenett, D. Y.; Bashan, A.; Gao, J.; Stanley, H. E., Vulnerability of network of networks, Eur. Phys. J. Spec. Top., 223, 2087-2106 (2014)
[446] Kenett, D. Y.; Perc, M.; Boccaletti, S., Networks of networks - An introduction, Chaos Solitons Fract., 80, 1-6 (2015) · Zbl 1354.00076
[447] Shao, S.; Huang, X.; Stanley, H. E.; Havlin, S., Robustness of a partially interdependent network formed of clustered networks, Phys. Rev. E, 89, Article 032812 pp. (2014)
[448] Dong, G.; Gao, J.; Du, R.; Tian, L.; Stanley, H. E.; Havlin, S., Robustness of network of networks under targeted attack, Phys. Rev. E, 87, Article 052804 pp. (2013)
[449] Shekhtman, L. M.; Berezin, Y.; Danziger, M. M.; Havlin, S., Robustness of a network formed of spatially embedded networks, Phys. Rev. E, 90, Article 012809 pp. (2014)
[450] Radicchi, F.; Bianconi, G., Redundant interdependencies boost the robustness of multiplex networks, Phys. Rev. X, 7, Article 011013 pp. (2017)
[451] Dickison, M.; Havlin, S.; Stanley, H. E., Epidemics on interconnected networks, Phys. Rev. E, 85, Article 066109 pp. (2012)
[452] Rapisardi, G.; Arenas, A.; Caldarelli, G.; Cimini, G., Fragility and anomalous susceptibility of weakly interacting networks, Phys. Rev. E, 99, Article 042302 pp. (2019)
[453] Melnik, S.; Porter, M. A.; Mucha, P. J.; Gleeson, J. P., Dynamics on modular networks with heterogeneous correlations, Chaos, 24, Article 023106 pp. (2014) · Zbl 1345.05110
[454] Shai, S.; Kenett, D. Y.; Kenett, Y. N.; Faust, M.; Dobson, S.; Havlin, S., Critical tipping point distinguishing two types of transitions in modular network structures, Phys. Rev. E, 92, Article 062805 pp. (2015)
[455] Faqeeh, A.; Melnik, S.; Colomer-de Simón, P.; Gleeson, J. P., Emergence of coexisting percolating clusters in networks, Phys. Rev. E, 93, Article 062308 pp. (2016)
[456] Gao, J.; Liu, X.; Li, D.; Havlin, S., Recent progress on the resilience of complex networks, Energies, 8, 12187-12210 (2015)
[457] Shekhtman, L. M.; Danziger, M. M.; Havlin, S., Recent advances on failure and recovery in networks of networks, Chaos Solitons Fract., 90, 28-36 (2016) · Zbl 1360.90005
[458] Fortunato, S., Community detection in graphs, Phys. Rep., 486, 75-174 (2010), http://www.sciencedirect.com/science/article/pii/S0370157309002841
[459] Fan, J.; Chen, X., General clique percolation in random networks, Europhys. Lett., 107, 28005 (2014), http://stacks.iop.org/0295-5075/107/i=2/a=28005
[460] Piraveenan, M.; Prokopenko, M.; Hossain, L., Percolation centrality: quantifying graph-theoretic impact of nodes during percolation in networks, PLoS ONE, 8, Article e53095 pp. (2013)
[461] Ferraro, G. D.; Moreno, A.; Min, B.; Morone, F.; Pérez-Ramírez, Ú.; Pérez-Cervera, L.; Parra, L. C.; Holodny, A.; Canals, S.; Makse, H. A., Finding influential nodes for integration in brain networks using optimal percolation theory, Nat. Commun., 9, 2274 (2018)
[462] Osat, S.; Faqeeh, A.; Radicchi, F., Optimal percolation on multiplex networks, Nat. Commun., 8, 1540 (2017)
[463] Ji, S.; Lü, L.; Yeung, C. H.; Hu, Y., Effective spreading from multiple leaders identified by percolation in the susceptible-infected-recovered (SIR) model, New J. Phys., 19, Article 073020 pp. (2017)
[464] Hu, Y.; Ji, S.; Jin, Y.; Feng, L.; Stanley, H. E.; Havlin, S., Local structure can identify and quantify influential global spreaders in large scale social networks, Proc. Natl. Acad. Sci. USA, 115, 7468-7472 (2018), https://www.pnas.org/content/115/29/7468 · Zbl 1416.94083
[465] Allard, A.; Hébert-Dufresne, L.; Young, J.-G.; Dubé, L. J., Coexistence of phases and the observability of random graphs, Phys. Rev. E, 89, Article 022801 pp. (2014)
[466] Hasegawa, T.; Takaguchi, T.; Masuda, N., Observability transitions in correlated networks, Phys. Rev. E, 88, Article 042809 pp. (2013)
[467] Yang, S.; Yang, Q.; Xu, X.; Lu, D.; Li, D., Observability transitions in networks with betweenness preference, PLoS ONE, 11, Article e0156764 pp. (2016)
[468] Yang, Y.; Radicchi, F., Observability transition in real networks, Phys. Rev. E, 94, Article 030301 pp. (2016)
[469] Osat, S.; Radicchi, F., Observability transition in multiplex networks, Physica A, 503, 745-761 (2018)
[470] Anderson, R. M.; May, R. M., Infectious Diseases in Humans (1992), Oxford University Press: Oxford University Press Oxford
[471] Vespignani, A., Modelling dynamical processes in complex socio-technical systems, Nat. Phys., 8, 32-39 (2012)
[472] Hethcote, H. W., The mathematics of infectious diseases, SIAM Rev., 42, 599-653 (2000) · Zbl 0993.92033
[473] Wang, W.; Tang, M.; Stanley, H. E.; Braunstein, L. A., Unification of theoretical approaches for epidemic spreading on complex networks, Rep. Prog. Phys., 80, Article 036603 pp. (2017)
[474] Parshani, R.; Carmi, S.; Havlin, S., Epidemic threshold for the susceptible-infectious-susceptible model on random networks, Phys. Rev. Lett., 104, Article 258701 pp. (2010)
[475] Barthélemy, M.; Barrat, A.; Pastor-Satorras, R.; Vespignani, A., Velocity and hierarchical spread of epidemic outbreaks in scale-free networks, Phys. Rev. Lett., 92, Article 178701 pp. (2004)
[476] Grassberger, P., Two-dimensional SIR epidemics with long range infection, J. Stat. Phys., 153, 289-311 (2013) · Zbl 1291.82023
[477] Juhász, R.; Kovács, I. A.; Iglói, F., Long-range epidemic spreading in a random environment, Phys. Rev. E, 91, Article 032815 pp. (2015)
[478] Ziff, A. L.; Ziff, R. M., Fractal kinetics of COVID-19 pandemic, medRxiv, 2020.02.16.20023820 (2020), https://www.medrxiv.org/content/early/2020/03/03/2020.02.16.20023820
[479] Li, M.; Chen, J.; Deng, Y., Scaling features in the spreading of COVID-19 (2020), ArXiv preprint arXiv:2002.09199
[480] Singer, H. M., The COVID-19 pandemic: growth patterns, power law scaling, and saturation, Phys. Biol., 17, Article 055001 pp. (2020)
[481] Maier, B. F.; Brockmann, D., Effective containment explains subexponential growth in recent confirmed COVID-19 cases in China, Science, 368, 742-746 (2020)
[482] Chowell, G.; Sattenspiel, L.; Bansal, S.; Viboud, C., Mathematical models to characterize early epidemic growth: A review, Phys. Life Rev., 18, 66-97 (2016)
[483] Barthélemy, M.; Barrat, A.; Pastor-Satorras, R.; Vespignani, A., Dynamical patterns of epidemic outbreaks in complex heterogeneous networks, J. Theor. Biol., 235, 275-288 (2005), http://www.sciencedirect.com/science/article/pii/S0022519305000251 · Zbl 1445.92262
[484] Moreno, Y.; Pastor-Satorras, R.; Vespignani, A., Epidemic outbreaks in complex heterogeneous networks, Eur. Phys. J. B, 26, 521-529 (2002)
[485] Volz, E.; Meyers, L. A., Epidemic thresholds in dynamic contact networks, J. R. Soc. Interface, 6, 233-241 (2009)
[486] Eames, K. T.D.; Keeling, M. J., Modeling dynamic and network heterogeneities in the spread of sexually transmitted diseases, Proc. Natl. Acad. Sci. USA, 99, 13330-13335 (2002)
[487] Sharkey, K. J., Deterministic epidemiological models at the individual level, J. Math. Biol., 57, 311-331 (2008) · Zbl 1141.92039
[488] Sharkey, K. J., Deterministic epidemic models on contact networks: Correlations and unbiological terms, Theor. Popul. Biol., 79, 115-129 (2011) · Zbl 1338.92140
[489] Lindquist, J.; Ma, J.; van den Driessche, P.; Willeboordse, F. H., Effective degree network disease models, J. Math. Biol., 62, 143-164 (2011) · Zbl 1232.92066
[490] Sharkey, K. J.; Kiss, I. Z.; Wilkinson, R. R.; Simon, P. L., Exact equations for SIR epidemics on tree graphs, Bull. Math. Biol., 77, 614-645 (2015) · Zbl 1334.92428
[491] Kiss, I. Z.; Morris, C. G.; Sélley, F.; Simon, P. L.; Wilkinson, R. R., Exact deterministic representation of Markovian SIR epidemics on networks with and without loops, J. Math. Biol., 70, 437-464 (2015) · Zbl 1306.05231
[492] Grassberger, P., On the critical behavior of the general epidemic process and dynamical percolation, Math. Biosci., 63, 157-172 (1983), http://www.sciencedirect.com/science/article/pii/0025556482900360 · Zbl 0531.92027
[493] Andersson, H.; Britton, T., Lecture notes in statistics (2000), Springer: Springer New York
[494] Pastor-Satorras, R.; Vespignani, A., Epidemic spreading in scale-free networks, Phys. Rev. Lett., 86, 3200-3203 (2001)
[495] Lloyd, A. L.; May, R. M., How viruses spread among computers and people, Science, 292, 1316-1317 (2001), https://science.sciencemag.org/content/292/5520/1316
[496] Boguñá, M.; Pastor-Satorras, R.; Vespignani, A., Absence of epidemic threshold in scale-free networks with degree correlations, Phys. Rev. Lett., 90, Article 028701 pp. (2003)
[497] Cai, C.-R.; Wu, Z.-X.; Guan, J.-Y., Effective degree Markov-chain approach for discrete-time epidemic processes on uncorrelated networks, Phys. Rev. E, 90, Article 052803 pp. (2014)
[498] Cai, C.-R.; Wu, Z.-X.; Chen, M. Z.Q.; Holme, P.; Guan, J.-Y., Solving the dynamic correlation problem of the susceptible-infected-susceptible model on networks, Phys. Rev. Lett., 116, Article 258301 pp. (2016)
[499] Pastor-Satorras, R.; Vespignani, A., Immunization of complex networks, Phys. Rev. E, 65, Article 036104 pp. (2002)
[500] Holme, P.; Kim, B. J.; Yoon, C. N.; Han, S. K., Attack vulnerability of complex networks, Phys. Rev. E, 65, Article 056109 pp. (2002)
[501] Schneider, C. M.; Mihaljev, T.; Havlin, S.; Herrmann, H. J., Suppressing epidemics with a limited amount of immunization units, Phys. Rev. E, 84, Article 061911 pp. (2011)
[502] Chen, Y.; Paul, G.; Havlin, S.; Liljeros, F.; Stanley, H. E., Finding a better immunization strategy, Phys. Rev. Lett., 101, Article 058701 pp. (2008)
[503] Cohen, R.; Havlin, S.; ben Avraham, D., Efficient immunization strategies for computer networks and populations, Phys. Rev. Lett., 91, Article 247901 pp. (2003)
[504] Holme, P., Efficient local strategies for vaccination and network attack, Europhys. Lett., 68, 908-914 (2004)
[505] Dodds, P. S.; Payne, J. L., Analysis of a threshold model of social contagion on degree-correlated networks, Phys. Rev. E, 79, Article 066115 pp. (2009)
[506] Dodds, P. S.; Watts, D. J., Universal behavior in a generalized model of contagion, Phys. Rev. Lett., 92, Article 218701 pp. (2004)
[507] Samuelsson, B.; Socolar, J. E.S., Exhaustive percolation on random networks, Phys. Rev. E, 74, Article 036113 pp. (2006)
[508] Backlund, V.-P.; Saramäki, J.; Pan, R. K., Effects of temporal correlations on cascades: Threshold models on temporal networks, Phys. Rev. E, 89, Article 062815 pp. (2014)
[509] Takaguchi, T.; Masuda, N.; Holme, P., Bursty communication patterns facilitate spreading in a threshold-based epidemic dynamics, PLoS ONE, 8, Article e68629 pp. (2013)
[510] Karimi, F.; Holme, P., Threshold model of cascades in empirical temporal networks, Physica A, 392, 3476-3483 (2013), http://www.sciencedirect.com/science/article/pii/S0378437113002835
[511] Li, D.; Fu, B.; Wang, Y.; Lu, G.; Berezin, Y.; Stanley, H. E.; Havlin, S., Percolation transition in dynamical traffic network with evolving critical bottlenecks, Proc. Natl. Acad. Sci. USA, 112, 669-672 (2014)
[512] Zeng, G.; Li, D.; Guo, S.; Gao, L.; Gao, Z.; Stanley, H. E.; Havlin, S., Switch between critical percolation modes in city traffic dynamics, Proc. Natl. Acad. Sci. USA, 116, 23-28 (2018)
[513] Wang, F.; Li, D.; Xu, X.; Wu, R.; Havlin, S., Percolation properties in a traffic model, Europhys. Lett., 112, 38001 (2015)
[514] Echenique, P.; Gómez-Gardeñes, J.; Moreno, Y., Dynamics of jamming transitions in complex networks, Europhys. Lett., 71, 325-331 (2005)
[515] Baggag, A.; Abbar, S.; Zanouda, T.; Srivastava, J., Resilience analytics: coverage and robustness in multi-modal transportation networks, EPJ Data Sci., 7, 14 (2018)
[516] Mahmassani, H. S., 50th anniversary invited article—autonomous vehicles and connected vehicle systems: Flow and operations considerations, Transport. Sci., 50, 1140-1162 (2016)
[517] Ubiergo, G. A.; Jin, W.-L., Mobility and environment improvement of signalized networks through vehicle-to-infrastructure (V2I) communications, Transport. Res. C -Emer., 68, 70-82 (2016)
[518] Ammari, H. M.; Das, S. K., Integrated coverage and connectivity in wireless sensor networks: A two-dimensional percolation problem, IEEE Trans. Comput., 57, 1423-1434 (2008) · Zbl 1390.90148
[519] Khanjary, M.; Sabaei, M.; Meybodi, M. R., Critical density for coverage and connectivity in two-dimensional fixed-orientation directional sensor networks using continuum percolation, J. Netw. Comput. Appl., 57, 169-181 (2015)
[520] Jin, X.; Su, W.; Wei, Y., A study of the VANET connectivity by percolation theory, (2011 IEEE Consumer Communications and Networking Conference, CCNC (2011), IEEE)
[521] Talebpour, A.; Mahmassani, H. S.; Hamdar, S. H., Effect of information availability on stability of traffic flow: Percolation theory approach, Transp. Res. Procedia, 23, 81-100 (2017)
[522] Mostafizi, A.; Dong, S.; Wang, H., Percolation phenomenon in connected vehicle network through a multi-agent approach: Mobility benefits and market penetration, Transport. Res. C -Emer., 85, 312-333 (2017)
[523] Serok, N.; Levy, O.; Havlin, S.; Blumenfeld-Lieberthal, E., Unveiling the inter-relations between the urban streets network and its dynamic traffic flows: Planning implication, Environ. Plan. B Urban Anal. City Sci., 46, 1362-1376 (2019)
[524] Behnisch, M.; Schorcht, M.; Kriewald, S.; Rybski, D., Settlement percolation: A study of building connectivity and poles of inaccessibility, Landscape Urban Plann., 191, Article 103631 pp. (2019)
[525] Jiang, Y.; Timmermans, H. J.; Yu, B., Relocation of manufacturing industry from the perspective of transport accessibility - An application of percolation theory, Transp. Policy, 63, 10-29 (2018)
[526] Piovani, D.; Molinero, C.; Wilson, A., Urban retail location: Insights from percolation theory and spatial interaction modeling, PLoS ONE, 12, Article e0185787 pp. (2017)
[527] Zhou, Y.; Wang, J.; Sheu, J.-B., On connectivity of post-earthquake road networks, Transport. Res. E -Log., 123, 1-16 (2019)
[528] Guo, S.; Wu, R.; Tong, Q.; Zeng, G.; Yang, J.; Chen, L.; Zhu, T.; Lv, W.; Li, D., Is city traffic damaged by torrential rain?, Physica A, 503, 1073-1080 (2018)
[529] Yang, H.-X.; Rong, Z.; Wang, W.-X., Cooperation percolation in spatial prisoner’s dilemma game, New J. Phys., 16, Article 013010 pp. (2014)
[530] Choi, W.; Yook, S.-H.; Kim, Y., Percolation in spatial evolutionary prisoner’s dilemma game on two-dimensional lattices, Phys. Rev. E, 92, Article 052140 pp. (2015)
[531] Yang, H.-X.; Yang, J., Cooperation percolation in spatial evolutionary games, Europhys. Lett., 124, 60005 (2019)
[532] Lin, M.; Li, N.; Tian, L.; Shi, D.-N., Spatial evolutionary game with bond dilution, Physica A, 389, 1753-1758 (2010)
[533] Yun, C. K.; Masuda, N.; Kahng, B., Diversity and critical behavior in prisoner’s dilemma game, Phys. Rev. E, 83, Article 057102 pp. (2011)
[534] Wang, Z.; Szolnoki, A.; Perc, M., Percolation threshold determines the optimal population density for public cooperation, Phys. Rev. E, 85, Article 037101 pp. (2012)
[535] Wang, Z.; Szolnoki, A.; Perc, M., If players are sparse social dilemmas are too: Importance of percolation for evolution of cooperation, Sci. Rep., 2, 369 (2012)
[536] Peng, D.; Li, M., Organization of cooperation in fractal structures (2020), ArXiv preprint arXiv:2010.06800
[537] Vainstein, M. H.; Brito, C.; Arenzon, J. J., Percolation and cooperation with mobile agents: Geometric and strategy clusters, Phys. Rev. E, 90, Article 022132 pp. (2014)
[538] Yeung, C. H.; Saad, D., Networking-A statistical physics perspective, J. Phys. A: Math. Theor., 46, Article 103001 pp. (2013) · Zbl 1262.05143
[539] Barthélemy, M., Spatial networks, Phys. Rep., 499, 1-101 (2011)
[540] Malliaros, F. D.; Vazirgiannis, M., Clustering and community detection in directed networks: A survey, Phys. Rep., 533, 95-142 (2013) · Zbl 1356.05151
[541] Bianconi, G.; Ziff, R. M., Topological percolation on hyperbolic simplicial complexes, Phys. Rev. E, 98, Article 052308 pp. (2018)
[542] Bianconi, G.; Kryven, I.; Ziff, R. M., Percolation on branching simplicial and cell complexes and its relation to interdependent percolation, Phys. Rev. E, 100, Article 062311 pp. (2019)
[543] Kryven, I.; Ziff, R. M.; Bianconi, G., Renormalization group for link percolation on planar hyperbolic manifolds, Phys. Rev. E, 100, Article 022306 pp. (2019)
[544] Bianconi, G.; Dorogovstev, S. N., The spectral dimension of simplicial complexes: a renormalization group theory, J. Stat. Mech., 2020, 1, Article 014005 pp. (2020) · Zbl 1459.05356
[545] Fountoulakis, N.; Przykucki, M., High-dimensional bootstrap processes in evolving simplicial complexes (2020), ArXiv preprint arXiv:1910.10139
[546] Sun, H.; Ziff, R. M.; Bianconi, G., Renormalization group theory of percolation on pseudo-fractal simplicial and cell complexes (2020), ArXiv preprint arXiv:2005.02984
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.