Fuzzy statistical analysis of multiple regression with crisp and fuzzy covariates and applications in analyzing economic data of China. (English) Zbl 1241.91143

Summary: This paper extends the simple fuzzy linear regression model to multiple fuzzy linear regression model in which response variable is fuzzy variable and part of the covariates are crisp variables. The least squares methods based on \(D _{K }\)-metric and the idea of stepwise regression are applied in parameter estimation. The significance test of the regression coefficients is considered. The Bootstrap methods are used to compute the standard errors of the estimates and \(P\)-values of tests. Fuzzy diagnostics based on \(D _{K }\)-metric are also developed to detect the outliers. Some simulations are performed to verify the obtained results, which are found to be satisfied. Finally, the early warning of macro-economic index data of China are illustrated our methodology.


91G70 Statistical methods; risk measures
62J86 Fuzziness, and linear inference and regression
Full Text: DOI


[1] Andersen E. B. (1992) Diagnostics in categorical data analysis. Journal of the Royal Statistical Society, Series, B 54: 781–791
[2] Banerjee M., Frees E. W. (1997) Influential diagnostics for linear longitudinal models. Journal of American Statistical Society 92: 999–1005 · Zbl 0889.62063
[3] Bertoluzza C., Corral N., Salas A. (1995) On a new class of distance between fuzzy numbers. Mathware & Soft Computing 2: 71–84 · Zbl 0887.04003
[4] Cheng C.-B., Lee E. S. (1999) Nonparametric fuzzy regression-k-NN and kernel smoothing techniques. Computers and Mathematics with Applications 38: 239–251 · Zbl 1043.62511
[5] Cook R. D. (1977) Detection of influential observations in linear regression. Technometrics 19: 15–18 · Zbl 0371.62096
[6] Diamond P. (1988) Fuzzy least squares. Information Sciences 46: 141–157 · Zbl 0663.65150
[7] Diamond P., Kloeden P. (1994) Metric spaces of fuzzy sets: Theory and application. World Scientific, Singapore · Zbl 0873.54019
[8] Diamond P., Körner R. (1997) Extended fuzzy linear models and least squares estimates. Computers & Mathematics with Application 33: 15–32 · Zbl 0936.62073
[9] Dubois D., Prade H. (1980) Theory and applications, fuzzy sets and systems. Academic Publishers, New York · Zbl 0444.94049
[10] Efron B., Tibsirani R. J. (1993) An introduction to the bootstrap. Chapman & Hall, New York
[11] González-Rodríguez G., Blanco A., Colubi A., Lubiano M. A. (2009) Estimation of a simple linear regression model for fuzzy random variables. Fuzzy Sets and Systems 160: 357–370 · Zbl 1175.62073
[12] González-Rodríguez G., Blanco A., Corral N., Colubi A. (2007) Least squares estimation of linear regression models for convex compact random sets. Advanced Data Reporting and Analysis Private Class 1: 67–81 · Zbl 1131.62058
[13] Hukuhara M. (1967) Intégration des applications measurable dont la valeur est un compact convexe. Funkcialaj Ekvacioj 10: 205–223 · Zbl 0161.24701
[14] Körner R., Näther W. (1998) Linear regression with random fuzzy variables: Extended classical estimates, best linear estimates, least squares estimates. Information Sciences 109: 95–118 · Zbl 0930.62072
[15] Körner, R., & Näther, W. (2002). On the variance of random fuzzy variables. In C. Bertoluzza, M. Gil, & D. Ralescu (Eds.), Statistical modeling, analysis and management of fuzzy data (pp. 22–39). Heidelberg: Physica-Verlag.
[16] Kruse R., Meyer K. D. (1987) Statistics with vague data. Reidel, Boston · Zbl 0663.62010
[17] Näther W. (1997) Linear statistical inference for random fuzzy data. Statistics 29: 221–240 · Zbl 1030.62530
[18] Puri M. L., Ralescu D. A. (1986) Fuzzy random variables. Journal of Mathematical Analysis and Applications 114: 409–422 · Zbl 0592.60004
[19] Tanaka, H., Uejima, S., & Asai, K. (1982). Linear regression analysis with fuzzy model. IEEE Transactions on Systems Man and Cybernetics, 12, 903–907. · Zbl 0501.90060
[20] Wei B. C. (1998) Exponential family nonlinear models. Springer, Singapore · Zbl 0904.62076
[21] Zadeh L. A. (1965) Fuzzy sets. Information and Control 8: 338–353 · Zbl 0139.24606
[22] Zhu H. T., Ibrahim J. G., Tang N. S. et al (2008) Diagnostic measures for empirical likelihood of generalized estimating equations. Biometrika 99: 489–507 · Zbl 1437.62678
[23] Zhu H. T., Lee S. Y., Wei B. C., Zhu J. (2001) Case-delete measures for models with incomplete data. Biometrika 88: 727–737 · Zbl 1006.62021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.