The local structure of globalization. (English) Zbl 1267.82058

Summary: We study the evolution of the network of foreign direct investment (FDI) in the international electricity industry during the period 1994–2003. We assume that the ties in the network of investment relations between countries are created and deleted in continuous time, according to a conditional Gibbs distribution. This assumption allows us to take simultaneously into account the aggregate predictions of the well-established gravity model of international trade as well as local dependencies between network ties connecting the countries in our sample. According to the modified version of the gravity model that we specify, the probability of observing an investment tie between two countries depends on the mass of the economies involved, their physical distance, and the tendency of the network to self-organize into local configurations of network ties. While the limiting distribution of the data generating process is an exponential random graph model, we do not assume the system to be in equilibrium. We find evidence of the effects of the standard gravity model of international trade on evolution of the global FDI network. However, we also provide evidence of significant dyadic and extra-dyadic dependencies between investment ties that are typically ignored in available research. We show that local dependencies between national electricity industries are sufficient for explaining global properties of the network of foreign direct investments. We also show, however, that network dependencies vary significantly over time giving rise to a time-heterogeneous localized process of network evolution.


82B41 Random walks, random surfaces, lattice animals, etc. in equilibrium statistical mechanics
91B24 Microeconomic theory (price theory and economic markets)


RSiena; PNet
Full Text: DOI


[1] Albert, R.; Barabási, A.-L., Statistical mechanics of complex networks, Rev. Mod. Phys., 74, 47-97, (2002) · Zbl 1205.82086
[2] Albert, M., Cederman, L.-E., Wendt, A.: New Systems Theories of World Politics. Palgrave Macmillan, London (2010)
[3] Aldous, D., Minimization algorithms and random walk on the d-cube, Ann. Probab., 11, 403-413, (1983) · Zbl 0513.60068
[4] Anderson, J.E., The gravity model, Ann. Rev. Econ., 3, 133-160, (2011)
[5] Anderson, J.E.; Wincoop, E., Trade costs, J. Econ. Lit., 42, 691-751, (2004)
[6] Antal, T.; Krapivsky, P.L.; Redner, S., Social balance on networks: the dynamics of friendship and enmity, Physica D, 224, 130, (2006) · Zbl 1130.91041
[7] Bacon, R.W.; Besant-Jones, G.J., Lobal electric power reform, privatization and liberalization of the electric power industry in developing countries, Annu. Rev. Energy Environ., 26, 331-359, (2001)
[8] Baker, M.; Foley, C.F.; Wurgler, J., Multinationals as arbitrageurs: the effect of stock market valuations on foreign direct investment, Rev. Financ. Stud., 22, 337-369, (2001)
[9] Baltagi, B.H.; Egger, P.; Pfaffermayr, M., Estimating regional trade agreement effects on FDI in an interdependent world, J. Econom., 145, 194-208, (2008) · Zbl 1418.62411
[10] Bandelj, N., Embedded economies: social relations as determinants of foreign direct investment in central and eastern Europe, Soc. Forces, 81, 411, (2002)
[11] Bergstrand, J.H.; Egger, P., A knowledge- and physical-capital model of international trade flows, foreign direct investment and multinational enterprises, J. Int. Econ., 73, 278-308, (2007)
[12] Besag, J.E., Spatial interaction and the statistical analysis of lattice systems (with discussion), J. R. Stat. Soc. B, 36, 192-236, (1974) · Zbl 0327.60067
[13] Bhattacharya, K.; Mukherjee, G.; Saramaki, J.; Kaski, K.; Manna, S., The international trade network: weighted network analysis and modeling, J. Stat. Mech. Theory Exp., 2, (2008)
[14] Blonigen, B.A.; Davies, R.B.; Waddell, G.R.; Naughton, H.T., FDI in space: spatial autoregressive relationships in foreign direct investment, Eur. Econ. Rev., 51, 1303-1325, (2007)
[15] Blume, L.E., The statistical mechanics of strategic interaction, Games Econ. Behav., 4, 387-424, (1993) · Zbl 0797.90123
[16] Burda, Z.; Jurkiewicz, J.; Krzywicki, A., Network transitivity and matrix models, Phys. Rev., 69, (2004)
[17] Butts, C.T., A relational event framework for social action, Sociol. Method., 381, 155-200, (2008)
[18] Butts, C.T.: Space and Structure: Methods and Models for Large-Scale Inter-personal Networks. Springer, Berlin (2010, expected)
[19] Caimo, A.; Friel, N., Bayesian inference for exponential random graph models, Soc. Netw., 33, 41-55, (2011)
[20] Chatterjee, S., Diaconis, P.: Estimating and understanding exponential random graph models. arXiv:1102.2650v3 (2011) · Zbl 1293.62046
[21] Corander, J., Dahmström, K., Dahmström, P.: Maximum likelihood estimation for Markov graphs. Research report, 1998:8, Stockholm University, Department of Statistics (1998)
[22] Corander, J.; Dahmström, K.; Dahmström, P.; Hagberg, J. (ed.), Maximum likelihood estimation for exponential random graph model, 1-17, (2002), Stockholm
[23] Crouch, B., Wasserman, S., Trachtenberg, F.: Markov Chain Monte Carlo maximum likelihood estimation for \(p\)\^{}{∗} social network models. Paper presented at the Sunbelt XVIII and Fifth European International Social Networks Conference, Sitges (Spain), May 28-31, 1998
[24] Daraganova, G.; Pattison, P.; Koskinen, J.; Mitchell, B.; Bill, A.; Watts, M.; Baum, S., Networks and geography: modelling community network structures as the outcome of both spatial and network processes, Soc. Netw., 34, 6-17, (2012)
[25] Disdier, A.; Head, K., The puzzling persistence of the distance effect on bilateral trade, Rev. Econ. Stat., 90, 37-48, (2008)
[26] Dueñas, M., Fagiolo, G.: Modeling the international-trade network: a gravity approach. arXiv:1112.2867v1 [q-fin.GN] (2011)
[27] Durlauf, S.; Arthur, B. (ed.); Durlauf, S. (ed.); Lane, D. (ed.), Statistical mechanics approaches to socioeconomic behavior, (1997), Sante Fe
[28] Egger, P., Mario, L.M.: Interdependent preferential trade agreement memberships: an empirical analysis (incomplete) (2006)
[29] Erdős, P.; Rényi, A., No article title, Publ. Math. Inst. Hung. Acad. Sci., 5, 17, (1960)
[30] Fagiolo, G.; Schiavo, S.; Reyes, J., World-trade web: topological properties, dynamics, and evolution, Phys. Rev. E, 79, (2009)
[31] Fagiolo, G.; Schiavo, S.; Reyes, J., The evolution of the world trade web: a weighted-network approach, J. Evol. Econ., 20, 479-514, (2010)
[32] Feld, S.L., The focused organization of social ties, Am. J. Sociol., 86, 1015-1035, (1981)
[33] Fidrmuc, J., Gravity models in integrated panels, Empir. Econ., 37, 435-446, (2009)
[34] Fienberg, S.E.; Wasserman, S.; Leinhardt, S. (ed.), Categorical data analysis of single sociometric relations, 156-192, (1981), San Francisco
[35] Fisher, S., Globalization and its challenges, Am. Econ. Rev., 93, 1-30, (2003)
[36] Frank, O.; Strauss, D., Markov graphs, J. Am. Stat. Assoc., 81, 832-842, (1986) · Zbl 0607.05057
[37] Gilks, W.R., Richardson, S., Spiegelhalter, D.J.: Markov Chain Monte Carlo in Practice. Chapman and Hall, London (1996) · Zbl 0832.00018
[38] Handcock, M.S.; Breiger, R. (ed.); Carley, K.M. (ed.); Pattison, P. (ed.), Statistical models for social networks: degeneracy and inference, 229-240, (2002), Washington
[39] Handcock, M.; Jones, J., An assessment of preferential attachment as a mechanism for human sexual network formation, Proc. R. Soc. B, 270, 1123-1128, (2003)
[40] Hanneke, S.; Xing, E.P.; Airoldi, E. (ed.); Blei, D.M. (ed.); Fienberg, S.E. (ed.); Goldenberg, A. (ed.); Xing, E.P. (ed.); Zheng, A.X. (ed.), Discrete temporal models of social networks, No. 4503, 115-125, (2007), Berlin
[41] Helpman, E.; Melitz, M.J.; Rubinstein, Y., Estimating trade flows: trading partners and trading volumes, Q. J. Econ., 123, 441-487, (2008) · Zbl 1179.91174
[42] Hintze, J.L.; Nelson, R.D., Violin plots: a box plot-density trace synergism, Am. Stat., 52, 181-184, (1998)
[43] Hoff, P., Multiplicative latent factor models for description and prediction of social networks, Comput. Math. Organ. Theory, 15, 261-272, (2009)
[44] Holland, P.W.; Leinhardt, S.; Heise, D. (ed.), Local structure in social networks, (1975), San Francisco
[45] Holland, P.W.; Leinhardt, S., A dynamic model for social networks, J. Math. Sociol., 5, 5-20, (1977) · Zbl 0354.92044
[46] Holland, P.W.; Leinhardt, S., An exponential family of probability distributions for directed graphs (with discussion), J. Am. Stat. Assoc., 76, 33-65, (1981) · Zbl 0457.62090
[47] Häggström, O.; Jonasson, J., Phase transition in the random triangle model, J. Appl. Probab., 36, 1101-1115, (1999) · Zbl 0969.05055
[48] Igarashi, T.; Lusher, D. (ed.); Koskinen, J.H. (ed.); Robins, G.E. (ed.), Longitudinal changes in face-to-face and text message-mediated friendship networks, 248-259, (2013), New York
[49] Indlekofer, N.: Visualizing the fit of actor-based models. Paper presented at the 5th UK Social Network Conference, 3-5 July, 2009. University of Greenwich, London (2009)
[50] Jansen, W.J., Stockman, C.J.: Foreign direct investment and international business cycle co-movement. European Central Bank. Working paper Series. WP N 401 (2004)
[51] Jonasson, J., The random triangle model, J. Appl. Probab., 36, 852-867, (1999) · Zbl 0943.05076
[52] Kim, S.; Shin, E.-H., A longitudinal analysis of globalization and regionalization in international trade: a network approach, Soc. Forces, 81, 445-470, (2002)
[53] Koskinen, J.H.; Snijders, T.A.B., Bayesian inference for dynamic social network data, J. Stat. Plan. Inference, 137, 3930-3938, (2007) · Zbl 1141.91043
[54] Koskinen, J.H.; Robins, G.L.; Pattison, P.E., Analysing exponential random graph (\(p\)-star) models with missing data using Bayesian data augmentation, Stat. Methodol., 7, 366-384, (2010) · Zbl 1233.62206
[55] Krackhardt, D.; Handcock, M.S.; Airoldi, E. (ed.); Blei, D.M. (ed.); Fienberg, S.E. (ed.); Goldenberg, A. (ed.); Xing, E.P. (ed.); Zheng, A.X. (ed.), Heider vs simmel: emergent features in dynamic structures, No. 4503, 14-27, (2007), Berlin
[56] Krugman, P.: Fire-sale FDI. In: Edwards, S. (ed.) Capital Flows and the Emerging Economies: Theory, Evidence, and Controversies, pp. 43-59. University of Chicago Press, Chicago (2000)
[57] Leamer, E.; Levinsohn, J.; Grossman, G.M. (ed.); Rogoff, K. (ed.), International trade theory: the evidence, (1995), Amsterdam
[58] Lospinoso, J.A.: Statistical models for social network dynamics. Unpublished doctoral thesis. Department of Statistics, University of Oxford (2012)
[59] Lospinoso, J.A.; Schweinberger, M.; Snijders, T.A.B.; Ripley, R.M., Assessing and accounting for time heterogeneity in stochastic actor oriented models, Adv. Data Anal. Comput., 5, 147-176, (2011) · Zbl 1284.62514
[60] Lusher, D., Ackland, R.: A relational hyperlink analysis of an online social movement. J. Soc. Struct. 12(5) (2011) · Zbl 0607.05057
[61] Lusher, D., Koskinen, J., Robins, G.: Exponential Random Graph Models for Social Networks: Theory, Methods and Applications. Cambridge University Press, New York (2013)
[62] Macy, M.W.; Willer, R., Form factors to actors, Annu. Rev. Sociol., 38, 143-166, (2002)
[63] Mayer, T., Zignago, S.: Notes on CEPII’s distances measures. MPRA Paper 31243 (2006)
[64] McPherson, M.; Smith-Lovin, L.; Cook, J.M., Birds of a feather: homophily in social networks, Annu. Rev. Sociol., 27, 415-444, (2001)
[65] Milo, R.; Shen-Orr, S.; Itzkovitz, S.; Kashtan, N.; Chklovskii, D.; Alon, U., Network motifs: simple building blocks of complex networks, Sci. Signal., 298, 824, (2002)
[66] Park, J.; Newman, M.E.J., General methods of statistical physics—statistical mechanics of networks, Phys. Rev. C, 70, 66117, (2004)
[67] Park, J.; Newman, M.E.J., Solution of the two-star model of a network, Phys. Rev. E, 70, (2004)
[68] Park, J.; Newman, M.E.J., Solution for the properties of a clustered network, Phys. Rev. E, 72, (2005)
[69] Pattison, P.; Robins, G.L., Neighbourhood-based models for social networks, Sociol. Method., 32, 301-337, (2002)
[70] Pattison, P.; Snijders, T.A.B.; Lusher, D. (ed.); Koskinen, J.H. (ed.); Robins, G.E. (ed.), Modelling social networks: next steps, 287-301, (2013), New York
[71] Power Deals: Annual Review. Price Waterhouse Coopers (2005)
[72] Preciado, P.; Snijders, T.A.B.; Burk, W.J.; Stattin, H.; Kerr, M., Does proximity matter? distance dependence of adolescent friendships, Soc. Netw., 34, 18-31, (2012)
[73] Ripley, R., Snijders, T.A.B.: Siena—Simulation Investigation for Empirical Network Analysis. Contributed R-package
[74] Robins, P.; Lusher, D.; Lusher, D. (ed.); Koskinen, J. (ed.); Robins, G. (ed.), Illustrations: simulation, estimation and goodness of fit, 167-186, (2013), New York
[75] Robins, G.; Morris, M., Advances in exponential random graph (\(p\)\^{}{∗}) models, Soc. Netw., 29, 169-172, (2007)
[76] Robins, G.L.; Pattison, P.E., Random graph models for temporal processes in social networks, J. Math. Sociol., 25, 5-41, (2001) · Zbl 0986.91048
[77] Robins, G.; Elliott, P.; Pattison, P., Network models for social selection processes, Soc. Netw., 23, 1-30, (2001)
[78] Robins, G.; Pattison, P.; Woolcock, J., Small and other worlds: global network structures from local processes, Am. J. Sociol., 110, 894-936, (2005)
[79] Robins, G.L.; Pattison, P.E.; Wang, P., Closure, connectivity and degree distributions: exponential random graph (\(p\)\^{}{∗}) models for directed social networks, Soc. Netw., 31, 105-117, (2009)
[80] Schelling, T.C., Dynamic models of segregation, J. Math. Sociol., 1, 143-186, (1971) · Zbl 1355.91061
[81] Schelling, T.: Micromotives and Macrobehavior. Norton, New York (1978)
[82] Serrano, A.; Boguñá, M.; Vespignani, A., Patterns of dominant flows in the world trade web, J. Econ. Coord., 2, 111-124, (2007)
[83] Simon, H., On a class of skew distribution functions, Biometrika, 42, 435-450, (1955)
[84] Snijders, T.A.B.; Sobel, M.E. (ed.); Becker, M.P. (ed.), The statistical evaluation of social network dynamics, 361-395, (2001), London
[85] Snijders, T.A.B.: Markov chain Monte Carlo estimation of exponential random graph models. J. Soc. Struct. 3(2) (2002)
[86] Snijders, T.A.B.; Luchini, S.R. (ed.), Statistical methods for network dynamics, 281-296, (2006), Padova
[87] Snijders, T.A.B.; Koskinen, J.; Lusher, D. (ed.); Koskinen, J. (ed.); Robins, G. (ed.), Longitudinal models, 130-140, (2013), New York · Zbl 1277.62088
[88] Snijders, T.A.B.; Pattison, P.; Robins, G.; Handcock, M., New specifications for exponential random graph models, Sociol. Method., 36, 99-153, (2006)
[89] Snijders, T.A.B.; Koskinen, J.H.; Schweinberger, M., Maximum likelihood estimation for social network dynamics, Ann. Appl. Stat., 4, 567-588, (2010) · Zbl 1194.62132
[90] Snijders, T.A.B.; Bunt, G.G.; Steglich, C.E.G., Introduction to stochastic actor-based models for network dynamics, Soc. Netw., 32, 44-60, (2012)
[91] Solomonoff, R.; Rapoport, A., Connectivity of random nets, Bull. Math. Biol., 13, 107-117, (1951)
[92] Squartini, T.; Fagiolo, G.; Garlaschelli, D., Randomizing world trade. I. A binary network analysis, Phys. Rev. E, 84, (2011)
[93] Squartini, T.; Fagiolo, G.; Garlaschelli, D., Randomizing world trade. II. A weighted network analysis, Phys. Rev. E, 84, (2011)
[94] Stark, D.; Vedres, B., Social times of network spaces: network sequences and foreign investment in Hungary, Am. J. Sociol., 111, 1367-1411, (2006)
[95] Strauss, D., On a general class of models for interaction, SIAM Rev., 28, 513-527, (1986) · Zbl 0612.60066
[96] Tinbergen, J.; Tinbergen, J. (ed.), An analysis of world trade flows, (1962), New York · JFM 63.1130.14
[97] Tzekina, I.; Danthi, K.; Rockmore, D., Evolution of community structure in the world trade web, Eur. Phys. J., B Cond. Matter Phys., 63, 541-545, (2008) · Zbl 1189.91186
[98] United Nations Conference on Trade and Development (UNCTAD): World Investment Report. UN, Geneva (1999-2003)
[99] Wang, P.; Pattison, P.; Robins, G., Exponential random graph model specifications for bipartite networks: a dependence hierarchy, Soc. Netw., (2012)
[100] Wang, P., Robins, G.L., Pattison, P.E.: PNet: program for the simulation and estimation of \(p\)\^{}{∗} exponential random graph models. Available from http://www.sna.unimelb.edu.au/ (2009)
[101] Wasserman, S.; Pattison, P.E., Logit models and logistic regressions for social networks: I. an introduction to Markov graphs and \(p\)\^{}{∗}, Psychometrika, 61, 401-425, (1996) · Zbl 0866.92029
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.