Pseudogenerators of spatial transfer operators. (English) Zbl 1322.82011


82C31 Stochastic methods (Fokker-Planck, Langevin, etc.) applied to problems in time-dependent statistical mechanics
35Q84 Fokker-Planck equations
35P15 Estimates of eigenvalues in context of PDEs


Zbl 1267.37101


Matlab; GAIO
Full Text: DOI arXiv


[1] V. Bally and D. Talay, The law of the Euler scheme for stochastic differential equations: II. Convergence rate of the density, Probability Theory Rel. Fields, 104 (1996), pp. 43–60. · Zbl 0838.60051
[2] J. R. Baxter and J. S. Rosenthal, Rates of convergence for everywhere-positive Markov chains, Statist. Probab. Lett., 22 (1995), pp. 333–338. · Zbl 0819.60056
[3] A. Bittracher, C. Hartmann, O. Junge, and P. Koltai, Pseudo generators for under-resolved molecular dynamics, EPJ-Special Topics, (2015), to appear.
[4] G. R. Bowman, X. Huang, and V. S. Pande, Using generalized ensemble simulations and Markov state models to identify conformational states, Methods, 49 (2009), pp. 197–201.
[5] J. D. Chodera, N. Singhal, V. S. Pande, K. A. Dill, and W. C. Swope, Automatic discovery of metastable states for the construction of Markov models of macromolecular conformational dynamics, J. Chem. Phys., 126 (2007), 155101.
[6] C. Cramer, Essentials of Computational Chemistry, Wiley, New York, 2004.
[7] M. Dellnitz, G. Froyland, and O. Junge, The algorithms behind GAIO—Set oriented numerical methods for dynamical systems, in Ergodic Theory, Analysis, and Efficient Simulation of Dynamical Systems, Springer, Berlin, Heidelberg, 2001, pp. 145–174. · Zbl 0998.65126
[8] M. Dellnitz and O. Junge, On the approximation of complicated dynamical behavior, SIAM J. Numer. Anal., 36 (1999), pp. 491–515. · Zbl 0916.58021
[9] P. Deuflhard, M. Dellnitz, O. Junge, and C. Schütte, Computation of essential molecular dynamics by subdivision techniques, in Computational Molecular Dynamics: Challenges, Methods, Ideas, Springer, New York, 1999, pp. 98–115. · Zbl 0966.81067
[10] P. Deuflhard, W. Huisinga, A. Fischer, and C. Schütte, Identification of almost invariant aggregates in reversible nearly uncoupled Markov chains, Linear Algebra Appl., 315 (2000), pp. 39–59. · Zbl 0963.65008
[11] P. Deuflhard and M. Weber, Robust Perron cluster analysis in conformation dynamics, Linear Algebra Appl., 398 (2005), pp. 161–184. · Zbl 1070.15019
[12] R. Elber and M. Karplus, Multiple conformational states of proteins: A molecular dynamics analysis of myoglobin, Science, 235 (1987), pp. 318–321.
[13] H. Frauenfelder and B. H. McMahon, Energy landscape and fluctuations in proteins, Ann. Phys., 9 (2000), pp. 655–667.
[14] G. Friesecke, O. Junge, and P. Koltai, Mean field approximation in conformation dynamics, Multiscale Model. Simul., 8 (2009), pp. 254–268. · Zbl 1214.82052
[15] G. Froyland, O. Junge, and P. Koltai, Estimating long-term behavior of flows without trajectory integration: The infinitesimal generator approach, SIAM J. Numer. Anal., 51 (2013), pp. 223–247. · Zbl 1267.37101
[16] U. G. Haussmann and É. Pardoux, Time reversal of diffusions, Ann. Probab., 14 (1986), pp. 1188–1205. · Zbl 0607.60065
[17] L. Hörmander, Hypoelliptic second order differential equations, Acta Math., 119 (1967), pp. 147–171. · Zbl 0156.10701
[18] X. Huang, Y. Yao, G. R. Bowman, J. Sun, L. J. Guibas, G. E. Carlsson, and V. S. Pande, Constructing multi-resolution Markov state models (MSMs) to elucidate RNA hairpin folding mechanisms, in Pacific Symposium on Biocomputing, Vol. 15, World Scientific, River Edge, NJ, 2010, pp. 228–239.
[19] W. Huisinga, Metastability of Markovian Systems, Ph.D. thesis, Freie Universität Berlin, 2001.
[20] W. Huisinga, S. Meyn, and C. Schütte, Phase transitions and metastability in Markovian and molecular systems, Ann. Appl. Probab., 14 (2004), pp. 419–458. · Zbl 1041.60026
[21] W. Huisinga and B. Schmidt, Metastability and dominant eigenvalues of transfer operators, in New Algorithms for Macromolecular Simulation, B. Leimkuhler, C. Chipot, R. Elber, A. Laaksonen, A. Mark, T. Schlick, C. Schütte, and R. Skeel, eds., Lecture Notes Comput. Sci. Engrg. 49, Springer, Berlin, Heidelberg, 2006, pp. 167–182.
[22] O. Junge and P. Koltai, Discretization of the Frobenius–Perron operator using a sparse Haar tensor basis: The sparse Ulam method, SIAM J. Numer. Anal., 47 (2009), pp. 3464–3485. · Zbl 1210.37061
[23] I. Karatzas and S. E. Shreve, Brownian Motion and Stochastic Calculus, Grad. Texts Math. 113, Springer-Verlag, New York, 1991. · Zbl 0734.60060
[24] P. Koltai, Efficient Approximation Methods for the Global Long-term Behavior of Dynamical Systems: Theory, Algorithms and Examples, Ph.D. thesis, TU München, Munich, Germany, 2010.
[25] S. Kusuoka and D. W. Stroock, Applications of the Malliavin calculus, Part II, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 32 (1985), pp. 1–76. · Zbl 0568.60059
[26] A. Lasota and M. C. Mackey, Chaos, Fractals, and Noise: Stochastic Aspects of Dynamics, Appl. Math. Sci. 97, Springer-Verlag, New York, 1994.
[27] J. C. Mattingly and A. M. Stuart, Geometric ergodicity of some hypo-elliptic diffusions for particle motions, Markov Process. Related Fields, 8 (2002), pp. 199–214. · Zbl 1014.60059
[28] J. C. Mattingly, A. M. Stuart, and D. J. Higham, Ergodicity for SDEs and approximations: Locally Lipschitz vector fields and degenerate noise, Stochastic Process. Appl., 101 (2002), pp. 185–232. · Zbl 1075.60072
[29] E. Nelson, Dynamical Theories of Brownian Motion, Princeton University Press, Princeton, NJ, 1967. · Zbl 0165.58502
[30] F. Noé, D. Krachtus, J. C. Smith, and S. Fischer, Transition networks for the comprehensive characterization of complex conformational change in proteins, J. Chem. Theory Comput., 2 (2006), pp. 840–857.
[31] B. Øksendal, Stochastic Differential Equations, Springer, New York, 2003.
[32] A. Ostermann, R. Waschipky, F. G. Parak, and G. Ulrich Nienhaus, Ligand binding and conformational motions in myoglobin, Nature, 404 (2000), pp. 205–208.
[33] V. S. Pande, K. Beauchamp, and G. R. Bowman, Everything you wanted to know about Markov state models but were afraid to ask, Methods, 52 (2010), pp. 99–105.
[34] G. A. Pavliotis and A. M. Stuart, Multiscale Methods: Averaging and Homogenization, Texts Appl. Math. 53, Springer, New York, 2008. · Zbl 1160.35006
[35] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983. · Zbl 0516.47023
[36] J.-H. Prinz, H. Wu, M. Sarich, B. Keller, M. Senne, M. Held, J. D. Chodera, C. Schütte, and F. Noé, Markov models of molecular kinetics: Generation and validation, J. Chem. Phys., 134 (2011), 174105.
[37] S. Röblitz and M. Weber, Fuzzy spectral clustering by PCCA+: Application to Markov state models and data classification, Adv. Data Anal. Classification, 7 (2013), pp. 147–179. · Zbl 1273.62145
[38] C. Schütte, Conformational Dynamics: Modelling, Theory, Algorithm, and Application to Biomolecules, ZIB-Report SC-99-18, 1999.
[39] C. Schütte, W. Huisinga, and P. Deuflhard, Transfer operator approach to conformational dynamics in biomolecular systems, in Ergodic Theory, Analysis, and Efficient Simulation of Dynamical Systems, B. Fiedler, ed., Springer, Berlin, Heidelberg, 2001, pp. 191–223. · Zbl 0996.92012
[40] C. Schütte, F. Noé, J. Lu, M. Sarich, and E. Vanden-Eijnden, Markov state models based on milestoning, J. Chem. Phys., 134 (2011), 204105.
[41] C. Schütte and M. Sarich, Metastability and Markov State Models in Molecular Dynamics, Courant Lect. Notes Math., New York, 2013.
[42] L. N. Trefethen, Spectral Methods in MATLAB, Software Environ. Tools 10, SIAM, Philadelphia, 2000. · Zbl 0953.68643
[43] E. Vanden-Eijnden, Transition-path theory and path-finding algorithms for the study of rare events, Ann. Rev. Phys. Chem., 61 (2010), pp. 391–420.
[44] M. Weber, Meshless Methods in Conformation Dynamics, Ph.D. thesis, Freie Universität Berlin, 2006. · Zbl 1202.62088
[45] M. Weber, A subspace approach to molecular Markov state models via a new infinitesimal generator, Habilitation thesis, Freie Universität Berlin, 2012.
[46] E. Weinan and E. Vanden-Eijnden, Metastability, conformation dynamics, and transition pathways in complex systems, in Multiscale Modelling and Simulation, Springer, New York, 2004, pp. 35–68. · Zbl 1141.82312
[47] E. Weinan and E. Vanden-Eijnden, Towards a theory of transition paths, J. Statist. Phys., 123 (2006), pp. 503–523. · Zbl 1101.82016
[48] E. Zeidler, Applied Functional Analysis, Applications to Mathematical Physics, Appl. Math. Sci. 108, Springer-Verlag, New York, 1995. · Zbl 0834.46002
[49] H.-X. Zhou, S. T. Wlodek, and J. A. McCammon, Conformation gating as a mechanism for enzyme specificity, Proc. Natl. Acad. Sci. USA, 95 (1998), pp. 9280–9283.
[50] R. Zwanzig, Nonequilibrium Statistical Mechanics, Oxford University Press, London, 2001. · Zbl 1267.82001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.