×

The interplay between models and public health policies: regional control for a class of spatially structured epidemics (think globally, act locally). (English) Zbl 1373.35168

Summary: A review is presented here of the research carried out, by a group including the authors, on the mathematical analysis of epidemic systems. Particular attention is paid to recent analysis of optimal control problems related to spatially structured epidemics driven by environmental pollution. A relevant problem, related to the possible eradication of the epidemic, is the so called zero stabilization. In a series of papers, necessary conditions, and sufficient conditions of stabilizability have been obtained. It has been proved that it is possible to diminish exponentially the epidemic process, in the whole habitat, just by reducing the concentration of the pollutant in a nonempty and sufficiently large subset of the spatial domain. The stabilizability with a feedback control of harvesting type is related to the magnitude of the principal eigenvalue of a certain operator. The problem of finding the optimal position (by translation) of the support of the feedback stabilizing control is faced, in order to minimize both the infected population and the pollutant at a certain finite time.

MSC:

35K57 Reaction-diffusion equations
92D30 Epidemiology
93C20 Control/observation systems governed by partial differential equations
93D15 Stabilization of systems by feedback
00-02 Research exposition (monographs, survey articles) pertaining to mathematics in general
92-02 Research exposition (monographs, survey articles) pertaining to biology
92-03 History of biology
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] H. Abbey, An examination of the Reed-Frost theory of epidemics,, Human Biology, 24, 201 (1952)
[2] S. Aniţa, A stabilizability problem for a reaction-diffusion system modelling a class of spatially structured epidemic model,, Nonlinear Anal. Real World Appl., 3, 453 (2002) · Zbl 1020.92027 · doi:10.1016/S1468-1218(01)00025-6
[3] S. Aniţa, A stabilization strategy for a reaction-diffusion system modelling a class of spatially structured epidemic systems (<em>think globally, act locally</em>),, Nonlinear Anal. Real World Appl., 10, 2026 (2009) · Zbl 1163.91510 · doi:10.1016/j.nonrwa.2008.03.009
[4] S. Aniţa, On the stabilization of reaction-diffusion systems modelling a class of man-environment epidemics: A review,, Mathematical Methods in Applied Sciences, 33, 1235 (2010) · Zbl 1195.35174 · doi:10.1002/mma.1267
[5] S. Aniţa, Stabilization of a reaction-diffusion system modelling a class of spatially structured epidemic systems via feedback control,, Nonlinear Anal. Real World Appl., 13, 725 (2012) · Zbl 1238.93081 · doi:10.1016/j.nonrwa.2011.08.012
[6] S. Aniţa, Stabilization of a reaction-diffusion system modelling malaria transmission,, Discrete and Continuous Dynamical Systems, 17, 1673 (2012) · Zbl 1250.35169 · doi:10.3934/dcdsb.2012.17.1673
[7] S. Aniţa, Regional control in optimal harvesting of population dynamics,, Submitted (2015)
[8] V. Arnăutu, Controlling the spread of a class of epidemics,, Appl. Math. Optimiz., 20, 297 (1989) · Zbl 0691.49024 · doi:10.1007/BF01447658
[9] D. G. Aronson, The asymptotic speed of propagation of a simple epidemic,, in Nonlinear Diffusion, 1 (1977) · Zbl 0361.35011
[10] P. Babak, Nonlocal initial problems for coupled reaction-diffusion systems and their applications,, Nonlinear Anal. RWA, 8, 980 (2007) · Zbl 1138.35346 · doi:10.1016/j.nonrwa.2006.05.001
[11] N. T. J. Bailey, A simple stochastic epidemic,, Biometrika, 37, 193 (1950) · Zbl 0038.29104 · doi:10.1093/biomet/37.3-4.193
[12] M. S. Bartlett, Some evolutionary stochastic processes,, J. Roy. Stat. Soc. Ser. B, 11, 211 (1949) · Zbl 0037.08503
[13] E. Beretta, On the general structure of epidemic systems. Global asymptotic stability,, Computers and Mathematics in Applications, 12, 677 (1986) · Zbl 0622.92016 · doi:10.1016/0898-1221(86)90054-4
[14] D. Bernoulli, Réflexions sur les avantages de l’inoculation,, Mercure de France, June, 173 (1760)
[15] D. J. Bradley, Epidemiological models - Theory and reality,, in The Population Dynamics of Infectious Diseases, 320 (2008) · doi:10.1007/978-1-4899-2901-3_10
[16] F. Brauer, Some infectious disease models with population dynamics and general contact rates,, Differential and Integral Equations, 3, 827 (1990) · Zbl 0722.92014
[17] J. Brownlee, The mathematical theory of random migration and epidemic distribution,, Proc. Roy. Soc. Edinburgh, 31, 262 (1912) · JFM 42.0257.02 · doi:10.1017/S0370164600025116
[18] S. Busenberg, Endemic thresholds and stability in a class of age-structured epidemics,, SIAM J. Appl. Math., 48, 1379 (1988) · Zbl 0666.92013 · doi:10.1137/0148085
[19] V. Capasso, <em>Mathematical Structures of Epidemic Systems</em>,, (corrected \(2^{nd}\) printing) (2008) · Zbl 1141.92035
[20] V. Capasso, Global solution for a diffusive nonlinear deterministic epidemic model,, SIAM J. Appl. Math., 35, 274 (1978) · Zbl 0415.92018 · doi:10.1137/0135022
[21] V. Capasso, Asymptotic stability for an integro-differential reaction-diffusion system,, J. Math. Anal. Appl., 103, 575 (1984) · Zbl 0595.45020 · doi:10.1016/0022-247X(84)90147-1
[22] V. Capasso, <em>An Introduction to Continuous-Time Stochastic Processes. Theory, Models, and Applications to Finance, Biology and Medicine</em>,, (Third Edition) (2015) · Zbl 1333.60002 · doi:10.1007/978-1-4939-2757-9
[23] V. Capasso, Model building as an inverse problem in Biomathematics,, in Frontiers in Mathematical Biology, 100, 600 (1994) · Zbl 0819.92001 · doi:10.1007/978-3-642-50124-1_35
[24] V. Capasso, A reaction-diffusion system arising in modelling man-environment diseases,, Quarterly Appl. Math., 46, 431 (1988) · Zbl 0704.35069 · doi:10.1090/qam/963580
[25] V. Capasso, Convergence to equilibrium states for a reaction-diffusion system modelling the spatial spread of a class of bacterial and viral diseases,, J. Math. Biol., 13, 173 (1981) · Zbl 0468.92016 · doi:10.1007/BF00275212
[26] V. Capasso, Saddle point behaviour for a reaction-diffusion system: Application to a class of epidemic models,, Math. Comput. Simulation, 24, 540 (1982) · Zbl 0502.92018 · doi:10.1016/0378-4754(82)90656-5
[27] V. Capasso, Periodic solutions for a reaction-diffusion system modelling the spread of a class of epidemics,, SIAM J. Appl. Math., 43, 417 (1983) · Zbl 0531.92026 · doi:10.1137/0143027
[28] V. Capasso, A mathematical model for the 1973 cholera epidemic in the European Mediterranean region,, Revue d’Epidemiologie et de la Sante’ Publique, 27, 121 (1979)
[29] V. Capasso, A generalization of the Kermack-Mckendrick deterministic epidemic model,, Mathematical Biosciences, 42, 43 (1978) · Zbl 0398.92026 · doi:10.1016/0025-5564(78)90006-8
[30] V. Capasso, A threshold theorem for a reaction-diffusion epidemic system,, in Differential Equations and Applications (R. Aftabizadeh, 128 (1989) · Zbl 0714.92020
[31] V. Capasso, Analysis of a reaction-diffusion system modelling man-environment-man epidemics,, SIAM J. Appl. Math., 57, 327 (1997) · Zbl 0872.35053 · doi:10.1137/S0036139995284681
[32] C. Castillo-Chavez, On the role of long incubation periods in the dynamics of acquired immunodeficiency syndrome (AIDS). Part 1: Single population models,, J. Math. Biol., 27, 373 (1989) · Zbl 0715.92029 · doi:10.1007/BF00290636
[33] C. Castillo-Chavez, On the role of long incubation periods in the dynamics of acquired immunodeficiency syndrome (AIDS). Part 2: Multiple group models,, in Mathematical and Statistical Approaches to AIDS Epidemiology, 83, 200 (1989) · Zbl 0705.92018 · doi:10.1007/978-3-642-93454-4_9
[34] C. T. Codeço, Endemic and epidemic dynamics of cholera: The role of the aquatic reservoir,, BMC Infectious Diseases, 1, 1 (2001)
[35] K. Dietz, Introduction to McKendrick (1926) Applications of mathematics to medical problems,, in Breakthroughs in Statistics Volume III, 17 (1997)
[36] K. Dietz, Mathematization in sciences epidemics: The fitting of the first dynamic models to data,, J. Contemp. Math. Anal., 44, 97 (2009) · Zbl 1302.92127 · doi:10.3103/S1068362309020034
[37] A. d’Onofrio, Vaccination behaviour, information, and the dynamics of SIR vaccine preventable diseases,, Theoretical Population Biology, 71, 301 (2007) · Zbl 1124.92029
[38] J. L. Doob, Markoff chains-denumerable case,, Trans. Am. Math. Society, 58, 455 (1945) · Zbl 0063.01146 · doi:10.2307/1990339
[39] En’ko, On the course of epidemics of some infectious diseases,, (Translation from Russian by K. Dietz) Int. J. Epidemiology, 18, 749 (1989)
[40] S. N. Ethier, <em>Markov Processes, Characterization and Convergence</em>,, Wiley (1986) · Zbl 0592.60049 · doi:10.1002/9780470316658
[41] W. Farr, Progress of epidemics,, Second Report of the Registrar General, 91 (1840)
[42] W. H. Frost, Some conceptions of epidemics in general,, Am. J. Epidemiology, 103, 141 (1976)
[43] D. T. Gillespie, A general method for numerically simulating the stochastic time evolution of coupled chemical reactions,, J. Comp. Physics, 22, 403 (1976) · doi:10.1016/0021-9991(76)90041-3
[44] B. S. Goh, Global stability in a class of predator-prey models,, Bull. Math. Biol., 40, 525 (1978) · Zbl 0378.92009 · doi:10.1007/BF02460776
[45] W. H. Hamer, Epidemic disease in England,, Lancet, 1, 733 (1906)
[46] A. Henrot, <em>Variation et Optimisation de Formes. Une Analyse Géométrique</em>,, Springer (2005) · Zbl 1098.49001 · doi:10.1007/3-540-37689-5
[47] O. A. van Herwaarden, Stochastic epidemics: Major outbreaks and the duration of the endemic period,, J. Math. Biol., 35, 793 (1997) · Zbl 0877.92024 · doi:10.1007/s002850050077
[48] H. W. Hethcote, Some epidemiological models with nonlinear incidence,, J. Math. Biol., 29, 271 (1991) · Zbl 0722.92015 · doi:10.1007/BF00160539
[49] F. Hoppensteadt, <em>Mathematical Theories of Populations: Demographics, Genetics and Epidemics</em>,, SIAM (1975) · Zbl 0304.92012
[50] D. G. Kendall, Mathematical models of the spread of infection,, in Mathematics and Computer Science in Biology and Medicine, 213 (1965)
[51] W. O. Kermack, A contribution to the mathematical theory of epidemics,, Proc. Roy. Soc. London, 115, 700 (1927) · JFM 53.0517.01
[52] M. A. Krasnoselkii, <em>Positive Solutions of Operator Equations</em>,, Nordhooff (1964)
[53] M. A. Krasnoselkii, <em>Translation Along Trajectories of Differential Equations</em>,, AMS (1968)
[54] J. L. Lions, <em>Controlabilité Exacte, Stabilisation et Perturbation de Systèmes Distribués</em>,, Masson (1988) · Zbl 0653.93002
[55] W. M. Liu, Dynamical behavior of epidemiological models with nonlinear incidence rates,, J. Math. Biol., 25, 359 (1987) · Zbl 0621.92014 · doi:10.1007/BF00277162
[56] W. M. Liu, Influence of nonlinear incidence rate upon the behaviour of SIRS epidemiological models,, J. Math. Biol., 23, 187 (1986) · Zbl 0582.92023 · doi:10.1007/BF00276956
[57] A. J. Lotka, Martini’s equations for the epidemiology of immunizing diseases,, Nature, 111, 633 (1923)
[58] G. Macdonald, The analysis of malaria parasite rates in infants,, Tropical Disease Bull., 47, 915 (1950)
[59] E. Martini, <em>Berechnungen und Beobachtungen zur Epidemiologie und Bekämpfung der Malaria</em>,, Gente (1921)
[60] I. Näsell, The transmission dynamics of schistosomiasis,, Comm. Pure Appl. Math., 26, 395 (1973) · Zbl 0253.92004 · doi:10.1002/cpa.3160260402
[61] A. Pugliese, An SEI epidemic model with varying population size,, in Differential Equation Models in Biology, 92, 121 (1991) · Zbl 0735.92022 · doi:10.1007/978-3-642-45692-3_9
[62] M. Puma, <em>Elementi per una Teoria Matematica del Contagio</em>,, Editoriale Aeronautica (1939) · JFM 65.0615.03
[63] R. Ross, <em>The Prevention of Malaria</em>,, Murray (1911)
[64] R. E. Serfling, Historical review of epidemic theory,, Human Biology, 24, 145 (1952)
[65] N. C. Severo, Generalizations of some stochastic epidemic models,, Math. Biosci., 4, 395 (1969) · Zbl 0172.45102 · doi:10.1016/0025-5564(69)90019-4
[66] H. E. Soper, The interpretation of periodicity in disease prevalence,, J. Roy. Stat. Soc., 92, 34 (1929) · JFM 55.0941.13 · doi:10.2307/2341437
[67] W. Y. Tan, <em>Stochastic Models with Applications to Genetics, Cancers, AIDS and Other Biomedical Systems</em>,, World Scientific (2002) · Zbl 0991.92001 · doi:10.1142/9789812777966
[68] H. R. Thieme, <em>Mathematics in Population Biology</em>,, Princeton University Press (2003) · Zbl 1054.92042
[69] E. B. Wilson, The law of mass action in epidemiology,, Proc. Nat. Acad. Sci., 31, 24 (1945) · doi:10.1073/pnas.31.1.24
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.