×

Semianalytical coupled model of transient pressure behavior for horizontal well with complex fracture networks in tight oil reservoirs. (English) Zbl 1435.74089

Summary: Due to a large number of natural fractures in tight oil reservoir, many complex fracture networks are generated during fracturing operation. There are five kinds of flow media in the reservoir: “matrix, natural fracture, hydraulic fracture network, perforation hole, and horizontal wellbore”. How to establish the seepage model of liquid in multiscale medium is a challenging problem. Firstly, this paper establishes the dual medium seepage model based on source function theory, principle of superposition, and Laplace transformation and then uses the “star-triangle” transform method to establish the transient pressure behavior model in the complex fracture network. After that, perforating seepage model and variable mass flow in horizontal wellbore were established. Finally, continuous condition was used to couple the seepage model of dual medium seepage model, transient pressure behavior model in the complex fracture network, perforation seepage model, and the variable mass seepage model in horizontal wellbore, to establish a semianalytical coupled seepage model for horizontal well in tight reservoir. This paper provides theoretical basis for field application of horizontal well with complex fracture networks.

MSC:

74R10 Brittle fracture
74L10 Soil and rock mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Xianwen, L.; Fengling, F.; Yang, H., olumetric fracturing technology of low-pressure tight oil reservoirs horizontal wells under different development conditions in ordos basin, Drilling & Production Technology, 39, 3, 34-36 (2016)
[2] Bello, R. O.; Wattenbarger, R. A., Multi-stage hydraulically fractured horizontal shale gas well rate transient analysis, Proceedings of the North Africa Technical Conference and Exhibition, Society of Petroleum Engineers · doi:10.2118/126754-MS
[3] Al-Ahmadi, H. A.; Almarzooq, A. M.; Wattenbarger, R. A., Application of linear flow analysis to shale gas wells - field cases, Proceedings of the SPE Unconventional Gas Conference 2010, Society of Petroleum Engineers
[4] Brown, M.; Ozkan, E.; Raghavan, R.; Kazemi, H., Practical solutions for pressure-transient responses of fractured horizontal wells in unconventional shale reservoirs, SPE Reservoir Evaluation and Engineering, 14, 6, 663-676 (2011) · doi:10.2118/125043-PA
[5] Stalgorova, E.; Mattar, L., Analytical model for unconventional multifractured composite systems, SPE Reservoir Evaluation & Engineering, 16, 3, 246-256 (2013) · doi:10.2118/162516-PA
[6] Zhou, W., Semi-analytical production simulation of complex hydraulic fracture network, Spe Jounal, 21, 110-122 (2012)
[7] Wanjing, L.; Changfu, T., Pressure-transient analysis of multiwing fractures connected to a vertical wellbore, SPE Journal, 20, 2, 360-367 (2015) · doi:10.2118/171556-PA
[8] Chen, Z.; Liao, X.; Zhao, X.; Lv, S.; Zhu, L., A semianalytical approach for obtaining type curves of multiple-fractured horizontal wells with secondary-fracture networks, SPE Journal, 21, 2, 538-549 (2016) · doi:10.2118/178913-PA
[9] Jia, P.; Cheng, L.; Huang, S.; Liu, H., Transient behavior of complex fracture networks, Journal of Petroleum Science and Engineering, 132, 1-17 (2015) · doi:10.1016/j.petrol.2015.04.041
[10] Yao, J.; Wang, Z. S.; Zhang, Y.; Huang, Z. Q., Numerical simulation method of discrete fracture network for naturally fractured reservoirs, Acta Petrolei Sinica, 31, 2, 284-288 (2010)
[11] De Dreuzy, J.-R.; Méheust, Y.; Pichot, G., Influence of fracture scale heterogeneity on the flow properties of three-dimensional discrete fracture networks (DFN), Journal of Geophysical Research: Solid Earth, 117, 11, 1-21 (2012)
[12] Habibi, M. J.; Mokhtari, A. R.; Baghbanan, A.; Namdari, S., Prediction of permeability in dual fracture media by multivariate regression analysis, Journal of Petroleum Science and Engineering, 120, 194-201 (2014) · doi:10.1016/j.petrol.2014.06.016
[13] Baca, R. G.; Arnett, R. C.; Langford, D. W., Modelling fluid flow in fractured‐porous rock masses by finite‐element techniques, International Journal for Numerical Methods in Fluids, 4, 4, 337-348 (1984) · Zbl 0579.76095 · doi:10.1002/fld.1650040404
[14] Xia, Y.; Zhaoqin, H.; Jun, Y., An improved multiple sub-region method for flow simulation of fractured reservoirs, Journal of China University of Petroleum (Edition of Natural Science), 40, 3, 121-129 (2016)
[15] Zhang, L.; Jia, M.; Zhang, R., Discrete fracture network modeling and numerical simulation of fractured reservoirs, Journal of Southwest Petroleum University, 39, 3, 121-127 (2017)
[16] Zhang, N.; Yao, J., Multiscale mixed finite element method for compressible flow in porous media, Chinese Journal of Computational Mechanics, 34, 2, 226-230 (2017) · Zbl 1389.76031
[17] Zhang, Q.; Huang, Z.; Yao, J.; Wang, Y.; Li, Y., Two-phase numerical simulation of discrete fracture model based on multiscale mixed finite element method, Chinese Science Bulletin, 62, 13, 1392-1401 (2017) · doi:10.1360/N972016-00584
[18] Lee, S. H.; Jensen, C. L.; Lough, M. F., Efficient finite-difference model for flow in a reservoir with multiple length-scale fractures, SPE Journal, 5, 3, 268-275 (2000) · doi:10.2118/65095-PA
[19] Li, L.; Lee, S. H., Efficient field-scale simulation of black oil in a naturally fractured reservoir through discrete fracture networks and homogenized media, SPE Reservoir Evaluation and Engineering, 11, 4, 750-758 (2008) · doi:10.2118/103901-PA
[20] Yan, X.; Huang, Z. Q.; Yao, J., The embeded discrete fracture model based on mimetic finite difference method, SCIENTIA SINICA Technologica, 44, 12, 1333-1342 (2014) · doi:10.1360/N092014-00047
[21] Jiang, J.; Younis, R. M., Hybrid coupled discrete-fracture/matrix and multicontinuum models for unconventional-reservoir simulation, SPE Journal, 21, 3, 1009-1027 (2016) · doi:10.2118/178430-PA
[22] Warren, J. E.; Root, P. J., The behavior of naturally fractured reservoirs, SPE Journal, 3, 3, 245-255 (1963) · doi:10.2118/426-pa
[23] Ozkan, E.; Raghavan, R., New solutions for well-test-analysis problems. Part 1. Analytical considerations, SPE Formation Evaluation, 6, 3, 359-368 (1991) · doi:10.2118/18615-PA
[24] Ren, Z.; Wu, X.; Liu, D., Semi-analytical model of the transient pressure behavior of complex fracture networks in tight oil reservoirs, Journal of Natural Gas Science & Engineering, 35, 497-508 (2016)
[25] Raghavan, R. S.; Chen, C.-C.; Bijan, A., An analysis of horizontal wells intercepted by multiple fractures, SPE Journal, 2, 3, 235-245 (1997) · doi:10.2118/27652-pa
[26] Zhang, Y.; Marongiu-Porcu, M.; Ehlig-Economides, C. A.; Tosic, S.; Economides, M. J., Comprehensive model for flow behavior of high-performance-fracture completions, SPE Production and Operations, 25, 4, 484-497 (2010) · doi:10.2118/124431-PA
[27] Han, G.; Mao, F.; Wu, X.; An, Y., Optimization model for configuration of laterals in asymmetrical herringbone well, Acta Petrolei Sinica, 30, 1, 92-95 (2009)
[28] Stehfest, H., Numerical inversion of Laplace transforms, Communications of the ACM, 13, 1, 47-49 (1970)
[29] Ren, Z.; Yan, R.; Huang, X.; Liu, W.; Yuan, S.; Xu, J.; Jiang, H.; Zhang, J.; Yan, R.; Qu, Z., The transient pressure behavior model of multiple horizontal wells with complex fracture networks in tight oil reservoir, Journal of Petroleum Science and Engineering, 173, 650-665 (2019) · doi:10.1016/j.petrol.2018.10.029
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.