×

On dynamic spectral risk measures, a limit theorem and optimal portfolio allocation. (English) Zbl 1422.91783

Summary: In this paper, we propose the notion of continuous-time dynamic spectral risk measure (DSR). Adopting a Poisson random measure setting, we define this class of dynamic coherent risk measures in terms of certain backward stochastic differential equations. By establishing a functional limit theorem, we show that DSRs may be considered to be (strongly) time-consistent continuous-time extensions of iterated spectral risk measures, which are obtained by iterating a given spectral risk measure (such as expected shortfall) along a given time-grid. Specifically, we demonstrate that any DSR arises in the limit of a sequence of such iterated spectral risk measures driven by lattice random walks, under suitable scaling and vanishing temporal and spatial mesh sizes. To illustrate its use in financial optimisation problems, we analyse a dynamic portfolio optimisation problem under a DSR.

MSC:

91G70 Statistical methods; risk measures
91G10 Portfolio theory
60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Acerbi, C.: Spectral measures of risk: a coherent representation of subjective risk aversion. J. Bank. Finance 26, 1505-1518 (2002) · doi:10.1016/S0378-4266(02)00281-9
[2] Artzner, P., Delbaen, F., Eber, J.M., Heath, D.: Coherent measures of risk. Math. Finance 9, 203-228 (1999) · Zbl 0980.91042 · doi:10.1111/1467-9965.00068
[3] Artzner, P., Delbaen, F., Eber, J.M., Heath, D., Ku, H.: Coherent multiperiod risk adjusted values and Bellman’s principle. Ann. Oper. Res. 152, 5-22 (2007) · Zbl 1132.91484 · doi:10.1007/s10479-006-0132-6
[4] Barles, G., Buckdahn, R., Pardoux, E.: Backward stochastic differential equations and integral-partial differential equations. Stoch. Stoch. Rep. 60, 57-83 (1997) · Zbl 0878.60036 · doi:10.1080/17442509708834099
[5] Becherer, D.: Bounded solutions to backward SDEs with jumps for utility optimization and indifference hedging. Ann. Appl. Probab. 16, 2027-2054 (2006) · Zbl 1132.91457 · doi:10.1214/105051606000000475
[6] Bion-Nadal, J.: Dynamic risk measures: time consistency and risk measures from BMO martingales. Finance Stoch. 12, 219-244 (2008) · Zbl 1150.91024 · doi:10.1007/s00780-007-0057-1
[7] Bion-Nadal, J.: Time consistent dynamic risk measures. Stoch. Process. Appl. 119, 633-654 (2009) · Zbl 1156.91359 · doi:10.1016/j.spa.2008.02.011
[8] Carlier, G., Dana, R.A.: Core of convex distortions of a probability. J. Econ. Theory 113, 199-222 (2003) · Zbl 1078.28003 · doi:10.1016/S0022-0531(03)00122-4
[9] Chen, Z., Epstein, L.: Ambiguity, risk, and asset returns in continuous time. Econometrica 70, 1403-1443 (2002) · Zbl 1121.91359 · doi:10.1111/1468-0262.00337
[10] Cheridito, P., Delbaen, F., Kupper, M.: Dynamic monetary risk measures for bounded discrete-time processes. Electron. J. Probab. 11, 57-106 (2006) · Zbl 1184.91109 · doi:10.1214/EJP.v11-302
[11] Cherny, A.S.: Weighted \(V@@\) R and its properties. Finance Stoch. 10, 367-393 (2006) · Zbl 1101.91023 · doi:10.1007/s00780-006-0009-1
[12] Cherny, A.S.: Capital allocation and risk contribution with discrete-time coherent risk. Math. Finance 19, 13-40 (2009) · Zbl 1155.91400 · doi:10.1111/j.1467-9965.2008.00355.x
[13] Cohen, S., Elliott, R.: A general theory of finite state backward stochastic difference equations. Stoch. Process. Appl. 120, 442-466 (2010) · Zbl 1205.60111 · doi:10.1016/j.spa.2010.01.004
[14] Cohen, S., Elliott, R.: Backward stochastic difference equations and nearly time-consistent nonlinear expectations. SIAM J. Control Optim. 49, 125-139 (2011) · Zbl 1225.60092 · doi:10.1137/090763688
[15] Coquet, F., Hu, Y., Mémin, J., Peng, S.: Filtration-consistent nonlinear expectations and related g-expectations. Probab. Theory Relat. Fields 123, 1-27 (2002) · Zbl 1007.60057 · doi:10.1007/s004400100172
[16] Delbaen, F.; Emery, M. (ed.); Yor, M. (ed.), The structure of m-stable sets and in particular of the set of risk neutral measures, No. 1874, 215-258 (2006), Berlin · Zbl 1121.60043 · doi:10.1007/978-3-540-35513-7_17
[17] Delong, Ł.: Backward Stochastic Differential Equations with Jumps and Their Actuarial and Financial Applications. Springer, Berlin (2013) · Zbl 1369.60001 · doi:10.1007/978-1-4471-5331-3
[18] Denneberg, D.: Non-Additive Measure and Integral. Kluwer Academic, Dordrecht (1994) · Zbl 0826.28002 · doi:10.1007/978-94-017-2434-0
[19] Dolinsky, Y., Nutz, M., Soner, H.M.: Weak approximation of G \(G\)-expectation. Stoch. Process. Appl. 122, 664-675 (2012) · Zbl 1259.60073 · doi:10.1016/j.spa.2011.09.009
[20] Duffie, D., Epstein, L.G.: Stochastic differential utility. Econometrica 60, 353-394 (1992) · Zbl 0763.90005 · doi:10.2307/2951600
[21] Eberlein, E., Madan, D.B., Pistorius, M., Yor, M.: Bid and ask prices as non-linear continuous time G-expectations based on distortions. Math. Financ. Econ. 8, 265-289 (2014) · Zbl 1307.91086 · doi:10.1007/s11579-014-0117-1
[22] Elliott, R.J., Siu, T.K., Cohen, S.N.: Backward stochastic difference equations for dynamic convex risk measures on a binomial tree. J. Appl. Probab. 52, 771-785 (2015) · Zbl 1390.91333 · doi:10.1017/S0021900200113427
[23] Epstein, L.G., Schneider, M.: Recursive multiple-priors. J. Econ. Theory 113, 1-31 (2003) · Zbl 1107.91360 · doi:10.1016/S0022-0531(03)00097-8
[24] Epstein, L.G., Zin, S.E.: Substitution, risk aversion, and the temporal behavior of consumption and asset returns: a theoretical framework. Econometrica 57, 937-969 (1989) · Zbl 0683.90012 · doi:10.2307/1913778
[25] Föllmer, H., Penner, I.: Convex risk measures and the dynamics of their penalty functions. Stat. Decis. 24, 61-96 (2006) · Zbl 1186.91119
[26] Föllmer, H., Schied, A.: Stochastic Finance, 3rd edn. de Gruyter, Berlin (2011) · Zbl 1125.91053 · doi:10.1515/9783110218053
[27] Hansen, L.P., Sargent, T.J.: Robustness. Princeton University Press, Princeton (2008) · Zbl 1134.93001 · doi:10.1515/9781400829385
[28] Hardy, M.R., Wirch, J.L.: The iterated CTE: a dynamic risk measure. N. Am. Actuar. J. 8, 62-75 (2004) · Zbl 1085.91524 · doi:10.1080/10920277.2004.10596171
[29] Jacod, J., Shiryaev, A.N.: Limit Theorems for Stochastic Processes. Springer, Berlin (1987) · Zbl 0635.60021 · doi:10.1007/978-3-662-02514-7
[30] Jobert, A., Rogers, L.: Valuations and dynamic convex risk measures. Math. Finance 18, 1-22 (2008) · Zbl 1138.91501 · doi:10.1111/j.1467-9965.2007.00320.x
[31] Klöppel, S., Schweizer, M.: Dynamic indifference valuation via convex risk measures. Math. Finance 17, 599-627 (2007) · Zbl 1138.91502 · doi:10.1111/j.1467-9965.2007.00317.x
[32] Koopmans, T.C.: Stationary ordinal utility and impatience. Econometrica 28, 287-309 (1960) · Zbl 0149.38401 · doi:10.2307/1907722
[33] Kreps, M.K., Porteus, E.L.: Temporal resolution of uncertainty and dynamic choice theory. Econometrica 46, 185-200 (1978) · Zbl 0382.90006 · doi:10.2307/1913656
[34] Kusuoka, S.: On law-invariant coherent risk measures. Adv. Math. Econ. 3, 83-95 (2001) · Zbl 1010.60030 · doi:10.1007/978-4-431-67891-5_4
[35] Kusuoka, S., Morimoto, Y.: Homogeneous law-invariant coherent multi-period value measures and their limits. J. Math. Sci. Univ. Tokyo 14, 117-156 (2007) · Zbl 1146.60006
[36] Laeven, R.J.A., Stadje, M.: Robust portfolio choice and indifference valuation. Math. Oper. Res. 39, 1109-1141 (2014) · Zbl 1310.91135 · doi:10.1287/moor.2014.0646
[37] Madan, D., Pistorius, M., Stadje, M.: Convergence of BSΔ \(\DeltaEs\) driven by random walks to BSDEs: the case of (in)finite activity jumps with general driver. Stoch. Process. Appl. 126, 1553-1584 (2016) · Zbl 1335.60132 · doi:10.1016/j.spa.2015.11.013
[38] Peng, S.: A generalized dynamic programming principle and Hamilton-Jacobi-Bellman equation. Stoch. Stoch. Rep. 38, 119-134 (1992) · Zbl 0756.49015 · doi:10.1080/17442509208833749
[39] Peng, S.; Frittelli, M. (ed.); Runggaldier, W. (ed.), Nonlinear expectations, nonlinear evaluations, and risk measures, 165-254 (2004), Berlin · Zbl 1127.91032 · doi:10.1007/978-3-540-44644-6_4
[40] Riedel, F.: Dynamic coherent risk measures. Stoch. Process. Appl. 112, 185-200 (2004) · Zbl 1114.91055 · doi:10.1016/j.spa.2004.03.004
[41] Roorda, B., Schumacher, J.M.: Time consistency conditions for acceptability measures—with an application to Tail Value at Risk. Insur. Math. Econ. 40, 209-230 (2007) · Zbl 1141.91547 · doi:10.1016/j.insmatheco.2006.04.003
[42] Rosazza Gianin, E.: Risk measures via g \(g\)-expectations. Insur. Math. Econ. 39, 19-34 (2006) · Zbl 1147.91346 · doi:10.1016/j.insmatheco.2006.01.002
[43] Royer, M.: Backward stochastic differential equations with jumps and related non-linear expectations. Stoch. Process. Appl. 116, 1358-1376 (2006) · Zbl 1110.60062 · doi:10.1016/j.spa.2006.02.009
[44] Sato, K.: Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press, Cambridge (1999) · Zbl 0973.60001
[45] Stadje, M.: Extending dynamic convex risk measures from discrete time to continuous time: a convergence approach. Insur. Math. Econ. 47, 391-404 (2010) · Zbl 1231.91240 · doi:10.1016/j.insmatheco.2010.08.005
[46] Strotz, R.H.: Myopia and inconsistency in dynamic utility optimisation. Rev. Econ. Stud. 23, 165-180 (1955) · doi:10.2307/2295722
[47] Tutsch, S.: Update rules for convex risk measures. Quant. Finance 8, 833-843 (2008) · Zbl 1154.91516 · doi:10.1080/14697680802055960
[48] Wang, S.: Premium calculation by transforming the layer premium density. ASTIN Bull. 26, 71-92 (1996) · doi:10.2143/AST.26.1.563234
[49] Weber, S.: Distribution-invariant risk measures, information, and dynamic consistency. Math. Finance 16, 419-442 (2006) · Zbl 1145.91037 · doi:10.1111/j.1467-9965.2006.00277.x
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.