×

Inference in multivariate Archimedean copula models. (English) Zbl 1274.62399

Summary: This paper proposes new rank-based estimators for multivariate Archimedean copulas. The approach stems from a recent representation of these copulas as the survival copulas of simplex distributions. The procedures are based on a reconstruction of the radial part of the simplex distribution from the Kendall distribution, which arises through the multivariate probability integral transformation of the data. In the bivariate case, the methodology is justified by the well known fact that an Archimedean copula is in one-to-one correspondence with its Kendall distribution. It is proved here that this property continues to hold in the trivariate case, and strong evidence is provided that it extends to any dimension. In addition, a criterion is derived for the convergence of sequences of multivariate Archimedean copulas. This result is then used to show consistency of the proposed estimators.

MSC:

62H05 Characterization and structure theory for multivariate probability distributions; copulas
62G05 Nonparametric estimation
62H12 Estimation in multivariate analysis
62H20 Measures of association (correlation, canonical correlation, etc.)
62G20 Asymptotic properties of nonparametric inference

Software:

QRM
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Barbe P, Genest C, Ghoudi K, Rémillard B (1996) On Kendall’s process. J Multivar Anal 58:197–229 · Zbl 0862.60020 · doi:10.1006/jmva.1996.0048
[2] Billingsley P (1968) Convergence of probability measures. Wiley, New York · Zbl 0172.21201
[3] Billingsley P (1995) Probability and measure, 3rd edn. Wiley, New York · Zbl 0822.60002
[4] Capéraà P, Genest C (1993) Spearman’s {\(\rho\)} is larger than Kendall’s {\(\tau\)} for positively dependent random variables. J Nonparametr Stat 2:183–194 · Zbl 1360.62294 · doi:10.1080/10485259308832551
[5] Charpentier A, Segers J (2008) Convergence of Archimedean copulas. Stat Probab Lett 78:412–419 · Zbl 1139.62303 · doi:10.1016/j.spl.2007.07.014
[6] Cherubini U, Luciano E, Vecchiato W (2004) Copula methods in finance. Wiley, New York · Zbl 1163.62081
[7] Cook RD, Johnson ME (1981) A family of distributions for modelling nonelliptically symmetric multivariate data. J R Stat Soc B 43:210–218 · Zbl 0471.62046
[8] Dimitrova DS, Kaishev VK, Penev SI (2008) GeD spline estimation of multivariate Archimedean copulas. Comput Stat Data Anal 52:3570–3582 · Zbl 1452.62347 · doi:10.1016/j.csda.2007.11.010
[9] Fang KT, Kotz S, Ng KW (1990) Symmetric multivariate and related distributions. Chapman & Hall, London · Zbl 0699.62048
[10] Frees EW, Valdez EA (1998) Understanding relationships using copulas. N Am Actuar J 2:1–25 · Zbl 1081.62564 · doi:10.1080/10920277.1998.10595667
[11] Genest C, Boies J-C (2003) Detecting dependence with Kendall plots. Am Stat 57:275–284 · Zbl 1182.62005 · doi:10.1198/0003130032431
[12] Genest C, Favre A-C (2007) Everything you always wanted to know about copula modeling but were afraid to ask. J Hydrol Eng 12:347–368 · doi:10.1061/(ASCE)1084-0699(2007)12:4(347)
[13] Genest C, MacKay RJ (1986) Copules archimédiennes et familles de lois bidimensionnelles dont les marges sont données. Can J Stat 14:145–159 · Zbl 0605.62049 · doi:10.2307/3314660
[14] Genest C, Rivest L-P (1989) A characterization of Gumbel’s family of extreme value distributions. Stat Probab Lett 8:207–211 · Zbl 0701.62060 · doi:10.1016/0167-7152(89)90123-5
[15] Genest C, Rivest L-P (1993) Statistical inference procedures for bivariate Archimedean copulas. J Am Stat Assoc 88:1034–1043 · Zbl 0785.62032 · doi:10.1080/01621459.1993.10476372
[16] Genest C, Rivest L-P (2001) On the multivariate probability integral transformation. Stat Probab Lett 53:391–399 · Zbl 0982.62056 · doi:10.1016/S0167-7152(01)00047-5
[17] Genest C, Quessy J-F, Rémillard B (2006) Goodness-of-fit procedures for copula models based on the probability integral transformation. Scand J Stat 33:337–366 · Zbl 1124.62028 · doi:10.1111/j.1467-9469.2006.00470.x
[18] Genest C, Nešlehová J, Quessy J-F (2011). Tests of symmetry for bivariate copulas. Ann Inst Stat Math 63, in press
[19] Ghoudi K, Khoudraji A, Rivest L-P (1998) Propriétés statistiques des copules de valeurs extrêmes bidimensionnelles. Can J Stat 26:187–197 · Zbl 0899.62071 · doi:10.2307/3315683
[20] Joe H (1997) Multivariate models and dependence concepts. Chapman & Hall, London · Zbl 0990.62517
[21] Kallenberg O (2002) Foundations of modern probability. Springer, New York · Zbl 0996.60001
[22] Kim G, Silvapulle MJ, Silvapulle P (2007) Comparison of semiparametric and parametric methods for estimating copulas. Comput Stat Data Anal 51:2836–2850 · Zbl 1161.62364 · doi:10.1016/j.csda.2006.10.009
[23] Kimberling CH (1974) A probabilistic interpretation of complete monotonicity. Aequ Math 10:152–164 · Zbl 0309.60012 · doi:10.1007/BF01832852
[24] Lambert P (2007) Archimedean copula estimation using Bayesian splines smoothing techniques. Comput Stat Data Anal 51:6307–6320 · Zbl 1445.62105 · doi:10.1016/j.csda.2007.01.018
[25] Larsson M, Nešlehová J (2011). Extremal behavior of Archimedean copulas. Adv Appl Probab 43:195–216 · Zbl 1213.62084 · doi:10.1239/aap/1300198519
[26] Marshall AW, Olkin I (1988) Families of multivariate distributions. J Am Stat Assoc 83:834–841 · Zbl 0683.62029 · doi:10.1080/01621459.1988.10478671
[27] McNeil AJ, Nešlehová J (2009) Multivariate Archimedean copulas, d-monotone functions and 1-norm symmetric distributions. Ann Stat 37:3059–3097 · Zbl 1173.62044 · doi:10.1214/07-AOS556
[28] McNeil AJ, Nešlehová J (2010) From Archimedean to Liouville copulas. J Multivar Anal 101:1772–1790 · Zbl 1190.62102 · doi:10.1016/j.jmva.2010.03.015
[29] McNeil AJ, Frey R, Embrechts P (2005) Quantitative risk management: concepts, techniques and tools. Princeton University Press, Princeton · Zbl 1089.91037
[30] Müller A, Scarsini M (2005) Archimedean copulae and positive dependence. J Multivar Anal 93:434–445 · Zbl 1065.60018 · doi:10.1016/j.jmva.2004.04.003
[31] Nelsen RB (2005) Some properties of Schur-constant survival models and their copulas. Braz J Probab Stat 19:179–190 · Zbl 1272.62065
[32] Nelsen RB, Quesada-Molina JJ, Rodríguez-Lallena JA, Úbeda-Flores M (2003) Kendall distribution functions. Stat Probab Lett 65:263–268 · Zbl 1048.62058 · doi:10.1016/j.spl.2003.08.002
[33] Oakes D (1989) Bivariate survival models induced by frailties. J Am Stat Assoc 84:487–493 · Zbl 0677.62094 · doi:10.1080/01621459.1989.10478795
[34] Qu X, Zhou J, Shen X (2010) Archimedean copula estimation and model selection via 1-norm symmetric distribution. Insur Math Econ 46:406–414 · Zbl 1231.91489 · doi:10.1016/j.insmatheco.2009.12.006
[35] Resnick SI (2008) Extreme values, regular variation and point processes. Springer, New York · Zbl 1136.60004
[36] Salvadori G, de Michele C, Kottegoda NT, Rosso R (2007) Extremes in nature: an approach using copulas. Springer, New York
[37] Savu C, Trede M (2008) Goodness-of-fit tests for parametric families of Archimedean copulas. Quant Finance 8:109–116 · Zbl 1134.91556 · doi:10.1080/14697680701207639
[38] Sklar A (1959) Fonctions de répartition à n dimensions et leurs marges. Publ Inst Stat Univ Paris 8:229–231 · Zbl 0100.14202
[39] Valdez EA, Xiao Y (2011) On the distortion of a copula and its margins. Scand Actuar J, in press · Zbl 1277.62140
[40] van der Vaart AW, Wellner JA (1996) Weak convergence and empirical processes. Springer, New York · Zbl 0862.60002
[41] Vandenhende F, Lambert P (2005) Local dependence estimation using semiparametric Archimedean copulas. Can J Stat 33:377–388 · Zbl 1096.62055 · doi:10.1002/cjs.5540330305
[42] Wang W, Wells MT (2000) Model selection and semiparametric inference for bivariate failure-time data. J Am Stat Assoc 95:62–72 · Zbl 0996.62091 · doi:10.1080/01621459.2000.10473899
[43] Wei G, Hu T (2002) Supermodular dependence ordering on a class of multivariate copulas. Stat Probab Lett 57:375–385 · Zbl 1005.60037 · doi:10.1016/S0167-7152(02)00094-9
[44] Werner D (2002) Funktionalanalysis, 3rd edn. Springer, Berlin · Zbl 1048.46004
[45] Williamson RE (1956) Multiply monotone functions and their Laplace transforms. Duke Math J 23:189–207 · Zbl 0070.28501 · doi:10.1215/S0012-7094-56-02317-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.