Tight approximations of dynamic risk measures. (English) Zbl 1410.91269

Summary: This paper compares two frameworks for measuring risk in a multiperiod setting. The first corresponds to applying a single coherent risk measure to the cumulative future costs, and the second involves applying a composition of one-step coherent risk mappings. We characterize several necessary and sufficient conditions under which one measurement always dominates the other and introduce a metric to quantify how close the two measures are. Using this notion, we address the question of how tightly a given coherent measure can be approximated by lower or upper bounding compositional measures. We exhibit an interesting asymmetry between the two cases: the tightest upper bound can be exactly characterized and corresponds to a popular construction in the literature, whereas the tightest lower bound is not readily available. We show that testing domination and computing the approximation factors are generally NP-hard, even when the risk measures are comonotonic and law-invariant. However, we characterize conditions and discuss examples where polynomial-time algorithms are possible. One such case is the well-known conditional value-at-risk measure, which we explore in more detail. Our theoretical and algorithmic constructions exploit interesting connections between the study of risk measures and the theory of submodularity and combinatorial optimization, which may be of independent interest.


91B30 Risk theory, insurance (MSC2010)
52B40 Matroids in convex geometry (realizations in the context of convex polytopes, convexity in combinatorial structures, etc.)
90C27 Combinatorial optimization
91B06 Decision theory
Full Text: DOI arXiv


[1] Acciaio B, Penner I (2011) Dynamic risk measures. Di Nunno G, Øksendal B, eds. Advanced Mathematical Methods for Finance (Springer, Berlin, Heidelberg), 1-34. CrossRef · Zbl 1230.91065
[2] Acerbi C (2002) Spectral measures of risk: A coherent representation of subjective risk aversion. J. Banking Finance 26(7):1505-1518. CrossRef
[3] Ahmed S, Çakmak U, Shapiro A (2007) Coherent risk measures in inventory problems. Eur. J. Oper. Res. 182(1):226-238. CrossRef · Zbl 1128.90002
[4] Artzner P, Delbaen F, Eber J-M, Heath D (1999) Coherent measures of risk. Math. Finance 9(3):203-228. CrossRef · Zbl 0980.91042
[5] Artzner P, Delbaen F, Eber J-M, Heath D, Ku H (2007) Coherent multiperiod risk adjusted values and Bellman’s principle. Ann. Oper. Res. 152:5-22. CrossRef · Zbl 1132.91484
[6] Balas E, Fischetti M (1996) On the monotonization of polyhedra. Math. Programming 78(7):59-84. CrossRef · Zbl 0890.90153
[7] Balas E, Bockmayr A, Pisaruk N, Wolsey L (2004) On unions and dominants of polytopes. Math. Programming 99(2):223-239. CrossRef · Zbl 1098.90092
[8] Basak S, Shapiro A (2001) Value-at-risk-based risk management: Optimal policies and asset prices. Rev. Financial Stud. 14(2):371-405. CrossRef
[9] Ben-Tal A, Teboulle M (2007) An old-new concept of convex risk measures: The optimized certainty equivalent. Math. Finance 17(3):449-476. CrossRef · Zbl 1186.91116
[10] Bertsimas D, Brown DB (2009) Constructing uncertainty sets for robust linear optimization. Oper. Res. 57(6):1483-1495. Abstract · Zbl 1228.90061
[11] Boda K, Filar J (2006) Time consistent dynamic risk measures. Math. Methods Oper. Res. 63(1):169-186. CrossRef · Zbl 1136.91471
[12] Boyd S, Vandenberghe L (2004) Convex Optimization (Cambridge University Press, Cambridge, UK). CrossRef
[13] Brazauskas V, Jones BL, Puri ML, Zitikis R (2008) Estimating conditional tail expectation with actuarial applications in view. J. Statist. Planning Inference 138(11):3590-3604. CrossRef · Zbl 1152.62027
[14] Cheridito P, Delbaen F, Kupper M (2006) Dynamic monetary risk measures for bounded discrete-time processes. Electronic J. Probab. 11(3):57-106. · Zbl 1184.91109
[15] Chow Y-L, Pavone M (2014) A unifying framework for time-consistent, risk-averse model predictive control: Theory and algorithms. Proc. Amer. Control Conf. (IEEE, Piscataway, NJ), 4204-4211.
[16] Cormen TH, Stein C, Rivest RL, Leiserson CE (2001) Introduction to Algorithms (McGraw-Hill Higher Education, New York).
[17] Cuoco D, He H, Isaenko S (2008) Optimal dynamic trading strategies with risk limits. Oper. Res. 56(2):358-368. Abstract · Zbl 1167.91365
[18] Detlefsen K, Scandolo G (2005) Conditional and dynamic convex risk measures. Finance Stochastics 9(4):539-561. CrossRef · Zbl 1092.91017
[19] Devalkar S, Anupindi R, Sinha A (2012) Dynamic risk management of commodity operations: Model and analysis. Available at SSRN: http://ssrn.com/abstract=2432067. · Zbl 1242.90009
[20] Epstein LG, Schneider M (2003) Recursive multiple-priors. J. Econom. Theory 113(1):1-31. CrossRef · Zbl 1107.91360
[21] Föllmer H, Penner I (2006) Convex risk measures and the dynamics of their penalty functions. Statist. Decisions 24(1):61-96. · Zbl 1186.91119
[22] Föllmer H, Schied A (2002) Convex measures of risk and trading constraints. Finance Stochastics 6(4):429-447. CrossRef · Zbl 1041.91039
[23] Föllmer H, Schied A (2004) Stochastic Finance in Discrete Time. 2nd ed. (Walter de Gruyter, Berlin). CrossRef
[24] Freund RM, Orlin JB (1985) On the complexity of four polyhedral set containment problems. Math. Programming 33(2):139-145. CrossRef · Zbl 0581.90060
[25] Fujishige S (2005) Submodular Functions and Optimization, 2nd ed.Annals of Discrete Mathematics, vol. 58 (Elsevier, Amsterdam).
[26] Gilboa I, Schmeidler D (1989) Maxmin expected utility with non-unique prior. J. Math. Econom. 18(2):141-153. CrossRef · Zbl 0675.90012
[27] Goemans M, Hall L (1996) The strongest facets of the acyclic subgraph polytope are unknown. William C, McCormick S, Queyranne M, eds. Integer Programming and Combinatorial Optimization, Lecture Notes in Computer Science, Vol. 1084 (Springer, Berlin), 415-429. CrossRef
[28] Hardy MR, Wirch JL (2004) The iterated CTE: A dynamic risk measure. North Amer. Actuarial J. 8(4):62-75. CrossRef · Zbl 1085.91524
[29] Horst R, Tuy H (2003) Global Optimization, 3rd ed. (Springer, Berlin).
[30] Huang P, Iancu DA, Petrik M, Subramanian D (2012) The price of dynamic inconsistency for distortion risk measures. arXiv:1106.6102v1.
[31] Huber PJ (1981) Robust Statistics (John Wiley & Sons, New York). CrossRef
[32] Iyengar GN (2005) Robust dynamic programming. Math. Oper. Res. 30(2):257-280. Abstract · Zbl 1082.90123
[33] Jorion P (2006) Value at Risk, 3rd ed. (McGraw Hill, New York).
[34] Kusuoka S (2001) On law invariant coherent risk measures. Adv. Math. Econom. 3(1):83-95. CrossRef · Zbl 1010.60030
[35] Lin Q, Peña JF (2012) Optimal trade execution with coherent dynamic risk measures. Available at SSRN: http://ssrn.com/abstract=2150878.
[36] Maccheroni F, Marinacci M, Rustichini A (2006) Ambiguity aversion, robustness, and the variational representation of preferences. Econometrica 74(6):1447-1498. CrossRef · Zbl 1187.91066
[37] Nilim A, El Ghaoui L (2005) Robust control of Markov decision processes with uncertain transition matrices. Oper. Res. 53(5):780-798. Abstract · Zbl 1165.90674
[38] Penner I (2007) Dynamic convex risk measures: Time consistency, prudence and sustainability. Unpublished doctoral dissertation, Humboldt-Universität zu Berlin. · Zbl 1151.91306
[39] Philpott A, de Matos V, Finardi E (2013) On solving multistage stochastic programs with coherent risk measures. Oper. Res. 61(4):957-970. Abstract · Zbl 1291.90152
[40] Riedel F (2004) Dynamic coherent risk measures. Stochastic Processes Their Appl. 112(2):185-200. CrossRef · Zbl 1114.91055
[41] Rockafellar RT, Uryasev S (2002) Conditional value-at-risk for general loss distributions. J. Banking Finance 26(7):1443-1471. CrossRef
[42] Rockafellar T (1970) Convex Analysis (Princeton University Press, Princeton, NJ). CrossRef
[43] Rockafellar TR, Uryasev S (2000) Optimization of conditional value-at-risk. J. Risk 2(3):21-41.
[44] Roorda B, Schumacher JM (2008) How to apply tail value at risk over multiple time steps avoiding accumulation of conservatism and extra parameters. Extended abstract for the Bachelier Finance Society World Congress.
[45] Roorda B, Schumacher JM (2007) Time consistency conditions for acceptability measures, with an application to tail value at risk. Insurance: Math. Econom. 40(2):209-230. CrossRef · Zbl 1141.91547
[46] Roorda B, Schumacher JM, Engwerda J (2005) Coherent acceptability measures in multiperiod models. Math. Finance 15(4):589-612. CrossRef · Zbl 1107.91059
[47] Rudloff B, Street A, Valladão DM (2012) Time consistency and risk averse dynamic decision models: Definition, interpretation and practical consequences. Eur. J. Oper. Res. 234(3):743-750. CrossRef · Zbl 1304.90113
[48] Ruszczyński A (2010) Risk-averse dynamic programming for Markov decision processes. Math. Programming 125(2):235-261. CrossRef · Zbl 1207.49032
[49] Ruszczyński A, Alexander S (2006a) Conditional risk mappings. Math. Oper. Res. 31(3):544-561. Abstract · Zbl 1278.90284
[50] Ruszczyński A, Shapiro A (2006b) Optimization of convex risk functions. Math. Oper. Res. 31(3):433-452. Abstract · Zbl 1181.90281
[51] Schmeidler D (1986) Integral representation without additivity. Proceedings of the Americal Math. Soc. 97(2):255-261. CrossRef · Zbl 0687.28008
[52] Schmeidler D (1989) Subjective probability and expected utility without additivity. Econometrica 57(3): 571-587. CrossRef · Zbl 0672.90011
[53] Schrijver A (2000) Theory of Linear and Integer Programming, 2nd ed. (John Wiley & Sons, Chichester, UK).
[54] Schrijver A (2003) Combinatorial Optimization: Polyhedra and Efficiency (Springer, Berlin).
[55] Shapiro A (2012) Minimax and risk averse multistage stochastic programming. Eur. J. Oper. Res. 219(3):719-726. CrossRef · Zbl 1253.90181
[56] Shapiro A, Dentcheva D, Ruszczyński A (2009) Lectures on Stochastic Programming, MPS/SIAM series on optimization (SIAM, Philadelphia). CrossRef
[57] Tsanakas A (2004) Dynamic capital allocation with distortion risk measures. Insurance: Math. Econom. 35(2):223-243. CrossRef · Zbl 1103.91316
[58] Wang SS (2000) A class of distortion operators for pricing financial and insurance risks. J. Risk Insurance 67(1): 15-36. CrossRef
[59] Wirch JL, Hardy MR (1999) A synthesis of risk measures for capital adequacy. Insurance: Math. Econom. 25(3):337-347. CrossRef · Zbl 0951.91032
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.