Backward stochastic difference equations for dynamic convex risk measures on a binomial tree. (English) Zbl 1390.91333

Summary: Using backward stochastic difference equations (BSDEs), this paper studies dynamic convex risk measures for risky positions in a simple discrete-time, binomial tree model. A relationship between BSDEs and dynamic convex risk measures is developed using nonlinear expectations. The time consistency of dynamic convex risk measures is discussed in the binomial tree framework. A relationship between prices and risks is also established. Two particular cases of dynamic convex risk measures, namely risk measures with stochastic distortions and entropic risk measures, and their mathematical properties are discussed.


91G70 Statistical methods; risk measures
39A50 Stochastic difference equations
60H30 Applications of stochastic analysis (to PDEs, etc.)
Full Text: DOI Euclid


[1] Artzner, P., Delbaen, F., Eber, J.-M. and Heath, D. (1999). Coherent measures of risk. Math. Finance 9, 203-228. · Zbl 0980.91042
[2] Artzner, P. et al. (2002). Coherent multiperiod risk measurement. Preprint, Department of Mathematics, ETH, Zürich.
[3] Barrieu, P. and El Karoui, N. (2004). Optimal derivatives design under dynamic risk measures. In Mathematics of Finance (Contemp. Math. 351 ), American Mathematical Society, Providence, RI, pp. 13-25. · Zbl 1070.91019
[4] Bion-Nadal, J. (2004). Conditional risk measure and robust representation of convex conditional risk measures. CMAP Preprint 557, École Polytechnique, Paris.
[5] Boyle, P., Siu, T. K. and Yang, H. (2002). Risk and probability measures. Risk 15, 53-57.
[6] Cheridito, P. and Stadje, M. (2013). BS\(\Delta\)Es and BSDEs with non-Lipschitz drivers: comparison, convergence and robustness. Bernoulli 19, 1047-1085. · Zbl 1306.60069
[7] Cherny, A. and Madan, D. (2009). New measures of performance evaluation. Rev. Financ. Stud. 22, 2571-2606.
[8] Cohen, S. N. and Elliott, R. J. (2009). A general theory of backward stochastic difference equations. Presentation Notes. University of Adelaide and University of Calgary.
[9] Cohen, S. N. and Elliott, R. J. (2010). A general theory of finite state backward stochastic difference equations. Stoch. Process. Appl. 120, 442-466. · Zbl 1205.60111
[10] Cohen, S. N. and Elliott, R. J. (2011). Backward stochastic difference equations with finite states. In Stochastic Analysis with Financial Applications (Progr. Prob. 65 ), Birkhäuser, Basel, pp. 33-42. · Zbl 1254.60055
[11] Coquet, F., Hu, Y., Mémin, J. and Peng, S. (2002). Filtration-consistent nonlinear expectations and related \(g\)-expectations. Prob. Theory Relat. Fields 123, 1-27. · Zbl 1007.60057
[12] Cvitanić, J. and Karatzas, I. (1999). On dynamic measures of risk. Finance Stoch. 3, 451-482. · Zbl 0982.91030
[13] Delbaen, F. (2006). The structure of \(m\)-stable sets and in particular of the set of risk neutral measures. In Memoriam Paul-André Meyer (Lecture Notes Math. 1874 ), Springer, Berlin, pp. 215-258. · Zbl 1121.60043
[14] Delbaen, F., Peng, S. and Rosazza-Gianin, E. (2010). Representation of the penalty term of dynamic concave utilities. Finance Stoch. 14 , 449-472. · Zbl 1226.91025
[15] Detlefsen, K. and Scandolo, G. (2005). Conditional and dynamic convex risk measures. Finance Stoch. 9, 539-561. · Zbl 1092.91017
[16] Eberlein, E. and Madan, D. B. (2009). Hedge fund performance: sources and measures. Internat. J. Theoret. Appl. Finance 12, 267-282. · Zbl 1180.91313
[17] El Karoui, N., Peng, S. and Quenez, M. C. (1997). Backward stochastic differential equations in finance. Math. Finance 7, 1-71. · Zbl 0884.90035
[18] Elliott, R. J. and Kopp, P. E. (2005). Mathematics of Financial Markets , 2nd edn. Springer, New York. · Zbl 1140.91032
[19] Elliott, R. J. and Siu, T. K. (2012). A BSDE approach to convex risk measures for derivative securities. Stoch. Anal. Appl. 30, 1083-1101. · Zbl 1254.91723
[20] Elliott, R. J. and Siu, T. K. (2013). Reflected backward stochastic differential equations, convex risk measures and American options. Stoch. Anal. Appl. 31, 1077-1096. · Zbl 1343.60093
[21] Elliott, R. J. and Yang, H. (1994). How to count and guess well: discrete adaptive filters. Appl. Math. Optimization 30, 51-78. · Zbl 0810.93062
[22] Elliott, R. J., Siu, T. K. and Chan, L. (2008). A PDE approach for risk measures for derivatives with regime switching. Ann. Finance 4, 55-74. · Zbl 1233.91271
[23] Föllmer, H. and Schied, A. (2002). Convex measures of risk and trading constraints. Finance Stoch. 6, 429-447. · Zbl 1041.91039
[24] Föllmer, H. and Schied, A. (2004). Stochastic Finance: An Introduction in Discrete Time (De Gruyter Studies Math. 27 ), 2nd edn. De Gruyter, Berlin. · Zbl 1126.91028
[25] Frittelli, M. and Rosazza-Gianin, E. (2002). Putting order in risk measures. J. Banking Finance 26, 1473-1486.
[26] Frittelli, M. and Rosazza-Gianin, E. (2004). Dynamic convex risk measures. In Risk Measures for the 21st Century , ed. G. Szegö, John Wiley, Chichester, pp. 227-248. · Zbl 1149.91320
[27] Jobert, A. and Rogers, L. C. G. (2008). Valuations and dynamic convex risk measures. Math. Finance 18, 1-22. · Zbl 1138.91501
[28] Klöppel, S. and Schweizer, M. (2007). Dynamic indifference valuation via convex risk measures. Math. Finance 17, 599-627. · Zbl 1138.91502
[29] Kupper, M. and Schachermayer, W. (2009). Representation results for law invariant time consistent functions. Math. Financial Econom. 2, 189-210. · Zbl 1255.91181
[30] Peng, S. (1997). Backward SDE and related \(g\)-expectation. In Backward Stochastic Differential Equations (Pitman Res. Notes Math. Ser. 364 ), Longman, Harlow, pp. 141-159. · Zbl 0892.60066
[31] Privault, N. (2009). Stochastic Analysis in Discrete and Continuous Settings with Normal Martingales . Springer, Berlin. · Zbl 1185.60005
[32] Rosazza-Gianin, E. (2006). Risk measures via \(g\)-expectations. Insurance Math. Econom. 39, 19-34. · Zbl 1147.91346
[33] Siu, T. K. (2012). Functional Itô’s calculus and dynamic convex risk measures for derivative securities. Commun. Stoch. Anal. 6, 339-358. · Zbl 1331.91183
[34] Siu, T. K. and Yang, H. (1999). Subjective risk measures: Bayesian predictive scenarios analysis. Insurance Math. Econom. 25, 157-169. · Zbl 0954.62125
[35] Siu, T. K. and Yang, H. (2000). A PDE approach to risk measures of derivatives. Appl. Math. Finance 7, 211-228. · Zbl 1013.91060
[36] Siu, T. K., Tong, H. and Yang, H. (2001). Bayesian risk measures for derivatives via random Esscher transform. N. Amer. Actuarial J. 5, 78-91. · Zbl 1083.62544
[37] Wang, S. S. (2000). A class of distortion operators for pricing financial and insurance risks. J. Risk Insurance 67, 15-36.
[38] Wang, S. S. and Young, V. R. (1998). Risk-adjusted credibility premiums using distorted probabilities. Scand. Actuarial J. 1998, 143-165. · Zbl 0884.90035
[39] Wang, T. (1999). A class of dynamic risk measures. Preprint. Faculty of Commerce and Business Administration, University of British Columbia.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.