×

Stat trek. An interview with Christian Genest. (English) Zbl 1403.62003

From the text: Dependence Modeling’s third interview features Christian Genest, a Canadian statistician who has long been and remains a major developer and promoter of copula-based dependence modeling. In addition to describing his career path and his contributions to statistical methodology, he gives us a glimpse of the large number of ways in which he has served the scientific community over the past 30 years. He is setting a good example which we hope many colleagues, young and old, will follow.

MSC:

62-03 History of statistics
62H05 Characterization and structure theory for multivariate probability distributions; copulas
01A70 Biographies, obituaries, personalia, bibliographies

Biographic References:

Genest, Christian
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] [1] Barbe, P., C. Genest, K. Ghoudi and B. Rémillard (1996). On Kendall’s process. J. Multivariate Anal. 58, 197-229. · Zbl 0862.60020
[2] Bellhouse, D.R. and C. Genest (1999). A history of the Statistical Society of Canada: The formative years (with discussion). Statist. Sci. 14, 80-125. · Zbl 1059.01550
[3] Bellhouse, D.R. and C. Genest (2007). Maty’s biography of Abraham De Moivre, translated, annotated and augmented. Statist. Sci. 22, 109-136. · Zbl 1246.01019
[4] Bohannon, J. (2013). Who’s afraid of peer review? Science 342 (6154), 60-65.
[5] Capéraà, P., A.-L. Fougères and C. Genest (1997). A nonparametric estimation procedure for bivariate extreme value copulas. Biometrika 84, 567-577. · Zbl 1058.62516
[6] Capéraà, P. and B. Van Cutsem (1988). Méthodes et modèles en statistique non paramétrique: Exposé fondamental. Dunod, Paris.
[7] Cox, D.R., L. Gleser, M.D. Perlman, N.M. Reid and K. Roeder (1993). Report of the Ad Hoc Committee on Double-Blind Refereeing (with discussion). Statist. Sci. 8, 310-330.
[8] Dall’Aglio, G., S. Kotz, and G. Salinetti (1991). Advances in Probability Distributions with GivenMarginals. Kluwer, Dordrecht, The Netherlands.
[9] Denuit, M., C. Genest and E.Marceau (2002). Criteria for the stochastic ordering of random sums,with actuarial applications. Scand. Act. J. 2002 (1), 3-16. · Zbl 1003.60022
[10] Embrechts, P. (2009). Copulas: A personal view. J. Risk Insur. 76, 639-650.
[11] Embrechts, P., A.J. McNeil and D. Straumann (1999). Correlation: Pitfalls and alternatives. RISKMagazine (May issue), 69-71.
[12] Ferguson, T.S. (1967). Mathematical Statistics: A Decision Theoretic Approach. Academic Press, New York. · Zbl 0153.47602
[13] Ferguson, T.S., C. Genest and M. Hallin (2000). Kendall’s tau for serial dependence. Canad. J. Statist. 28, 587-604. · Zbl 0958.62083
[14] Frees, E.W. and E.A. Valdez (1998). Understanding relationships using copulas. North Amer. Act. J. 2, 1-25. · Zbl 1081.62564
[15] Gendron, M. and C. Genest (1993). Performance measurement under asymmetric information and investment constraints. J. Finance 45, 1655-1661.
[16] Genest, C. (1987). Frank’s family of bivariate distributions. Biometrika 74, 549-555. · Zbl 0635.62038
[17] Genest, C. (1988). Are statisticians mean people? SSC Liaison 2 (3), 48-50.
[18] Genest, C. (2004). DeMoSTAFI conference. SSC Liaison 18 (3), 13-14.
[19] Genest, C. and A. Carabarín-Aguirre (2013). A digital picture of the actuarial research community. North Amer. Act. J. 17, 3-12.
[20] Genest, C. and A.-C. Favre (2007). Everything you always wanted to know about copula modeling but were afraid to ask. J. Hydrol. Eng. 12, 347-368.
[21] Genest, C., Gendron, M. and M. Bourdeau-Brien (2009). The advent of copulas in finance. Europ. J. Finance 15, 609-618.
[22] Genest, C., K. Ghoudi and L.-P. Rivest (1995). A semiparametric estimation procedure of dependence parameters in multivariate families of distributions. Biometrika 82, 543-552. · Zbl 0831.62030
[23] Genest, C. and M. Guay (2002). Worldwide research output in probability and statistics: An update. Canad. J. Statist. 30, 329-342. · Zbl 1107.62300
[24] Genest, C., F. Lapointe and S.W. Drury (1993). On a proposal of Jensen for the analysis of ordinal pairwise preferences using Saaty’s eigenvector scaling method. J. Math. Psych. 37, 575-610. · Zbl 0797.92030
[25] Genest, C., R.A. Lockhart and M.A. Stephens (2002). Chi-square and the lottery. Statist. 51, 243-257.
[26] Genest, C. and R.J. MacKay (1986a). Copules archimédiennes et familles de lois bidimensionnelles dont les marges sont données. Canad. J. Statist. 14, 145-159. · Zbl 0605.62049
[27] Genest, C. and R.J. MacKay (1986b). The joy of copulas: Bivariate distributions with uniform marginals. Amer. Statist. 40, 280-283.
[28] Genest, C., E. Marceau and M. Mesfioui (2003). Compound Poisson approximations for individual models with dependent risks. Insur. Math. Econom. 32, 73-91. · Zbl 1055.91050
[29] Genest, C. and J.-C.Massé (1996). Recueil des résumés des communications des 28e Journées de statistique du 27 au 30 mai 1996, Université Laval, Québec. Bureau de la statistique du Québec, Québec, Canada.
[30] Genest, C., K.J. McConway and M.J. Schervish (1986). Characterization of externally Bayesian pooling operators. Ann. Statist. 14, 487-501. · Zbl 0602.62005
[31] Genest, C. and J. Nešlehová (2007). A primer on copulas for count data. ASTIN Bull. 37, 475-515. · Zbl 1274.62398
[32] Genest, C., J.G. Nešlehová and B. Rémillard (2014). On the empirical multilinear copula process for count data. Bernoulli 20, 1344-1371. · Zbl 1365.62221
[33] Genest, C., J.-F. Quessy and B. Rémillard (2006). Goodness-of-fit procedures for copula models based on the probability integral transformation. Scand. J. Statist. 33, 337-366. · Zbl 1124.62028
[34] Genest, C., J.-F. Quessy and B. Rémillard (2007). Asymptotic local efficiency of Cramér-von Mises tests for multivariate independence. Ann. Statist. 35, 166-191. · Zbl 1114.62058
[35] Genest, C. and B. Rémillard (2004). Tests of independence and randomness based on the empirical copula process. Test 13, 335-369. · Zbl 1069.62039
[36] Genest, C. and B. Rémillard (2008). Validity of the parametric bootstrap for goodness-of-fit testing in semiparametric models. Ann. Inst. H. Poincaré Probab. Statist. 44, 1096-1127. · Zbl 1206.62044
[37] Genest, C., B. Rémillard and D. Beaudoin (2009). Goodness-of-fit tests for copulas: A review and a power study. Insur.Math. Econom. 44, 199-213. · Zbl 1161.91416
[38] Genest, C. and L.-P. Rivest (1993). Statistical inference procedures for bivariate Archimedean copulas. J. Amer. Statist. Assoc. 88, 1034-1043. · Zbl 0785.62032
[39] Genest, C. and L.-P. Rivest (1994). A statistical look at Saaty’s method of estimating pairwise preferences expressed on a ratio scale. J. Math. Psych. 38, 477-496. · Zbl 0816.90008
[40] Genest, C. and M.J. Schervish (1985). Modeling expert judgment for Bayesian updating. Ann. Statist. 13, 1198-1212. · Zbl 0609.62007
[41] Genest, C. and J. Segers (2009). Rank-based inference for bivariate extreme-value copulas. Ann. Statist. 37, 2990-3022. · Zbl 1173.62013
[42] Genest, C. and J.V. Zidek (1986). Combining probability distributions: A critique and an annotated bibliography (with discussion). Statist. Sci. 1, 114-148. · Zbl 0587.62017
[43] Joe, H. (1997). Multivariate Models and Dependence Concepts. Chapman & Hall, London. · Zbl 0990.62517
[44] Kahneman, D. and A. Tversky (1979). Prospect theory: An analysis of decision under risk. Econometrica 47, 263-291. · Zbl 0411.90012
[45] Kunen, K. (1980). Set Theory: An Introduction to Independence Proofs, North-Holland, New York. · Zbl 0443.03021
[46] Kurowicka, D. and H. Joe (2011). Dependence Modeling: Vine Copula Handbook. World Scientific, Singapore.
[47] Lawless, J.F. (2014). Statistics in Action: A Canadian Outlook. Chapman & Hall, London. · Zbl 1291.01001
[48] Lin, X., C. Genest, D.L. Banks, G. Molenberghs, D.W. Scott and J.-L. Wang (2014). Past, Present, and Future of Statistical Science. Chapman & Hall, London. · Zbl 1291.62001
[49] Mikosch, T. (2006). Copulas: Tales and facts (with discussion). Extremes 9, 1-62. · Zbl 1164.62355
[50] Miller, J.E. (1951). How Newton discovered the law of gravitation. Amer. Scient. 39, 134-140.
[51] Nelsen, R.B. (1999). An Introduction to Copulas. Springer, Berlin. · Zbl 0909.62052
[52] Nešlehová, J. (2007). On rank correlation measures for non-continuous random variables. J.Multivariate Anal. 98, 544-567.
[53] Pearson, K. (1892). The Grammar of Science. Dent, London. · JFM 23.0048.02
[54] Saaty, T.L. (1977). A scaling method for priorities in hierarchical structures. J. Math. Psych. 15, 234-281. · Zbl 0372.62084
[55] Schweizer, B. and E.F. Wolff (1981). On nonparametric measures of dependence for random variables. Ann. Statist. 9, 879- 885. · Zbl 0468.62012
[56] Shih, J.H. and T.A. Louis (1995). Inferences on the association parameter in copula models for bivariate survival data. Biometrics 51, 1384-1399. · Zbl 0869.62083
[57] Weber, R.L. and E. Mendoza (2000). A Random Walk in Science, CRC Press, London.
[58] Wiener, N. (1953). I am a Mathematician: The Later Life of a Prodigy. MIT Press, Cambridge, MA.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.