×

Bayesian consensus clustering in multiplex networks. (English) Zbl 1425.91359

Summary: Multiplex networks are immanently characterized with heterogeneous relations among vertices. In this paper, we develop Bayesian consensus stochastic block modeling for multiplex networks. The posterior distribution of the model is approximated via Markov chain Monte Carlo, and a Gibbs sampler is derived in detail. The model allows both integrated analysis of heterogeneous relations, thus providing more accurate block assignments, and simultaneously handling uncertainty in the model parameters. Motivated by the fact that the symmetry in physics plays a crucial role, we discuss also the symmetry in statistics, which is nowadays commonly known as exchangeability – the concept that has recently transformed the field of statistical network analysis.
©2019 American Institute of Physics

MSC:

91C20 Clustering in the social and behavioral sciences
91D30 Social networks; opinion dynamics

Software:

ArviZ; PRMLT
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] De Finetti, B., La prévision: ses lois logiques, ses sources subjectives, Ann. I. H. Poincare, 7, 1-68 (1937) · JFM 63.1070.02
[2] Kallenberg, O., Probabilistic Symmetries and Invariance Principles (2005) · Zbl 1084.60003
[3] Goldenberg, A.; Zheng, A. X.; Fienberg, S. E.; Airoldi, E. M., A survey of statistical network models, Found. Trends Mach. Learn., 2, 129-233 (2010) · Zbl 1184.68030
[4] Salter-Townshend, M.; White, A.; Gollini, I.; Murphy, T. B., Review of statistical network analysis: Models, algorithms, and software, Stat. Anal. Data Mining ASA Data Sci. J., 5, 243-264 (2012) · Zbl 07260329
[5] Snijders, T. A., Statistical models for social networks, Annu. Rev. Sociol., 37, 131-153 (2011)
[6] Kolaczyk, E. D.; Csárdi, G., Statistical Analysis of Network Data with R (2014) · Zbl 1290.62002
[7] Crane, H., Probabilistic Foundations of Statistical Network Analysis (2018) · Zbl 1490.62001
[8] Snijders, T. A.; Pattison, P. E.; Robins, G. L.; Handcock, M. S., New specifications for exponential random graph models, Sociol. Methodol., 36, 99-153 (2006)
[9] Robins, G.; Pattison, P.; Kalish, Y.; Lusher, D., An introduction to exponential random graph \(( <mml:math display=''inline`` overflow=''scroll``>\)*) models for social networks, Soc. Netw., 29, 173-191 (2007)
[10] Lusher, D.; Koskinen, J.; Robins, G., Exponential Random Graph Models for Social Networks: Theory, Methods, and Applications (2013)
[11] Lovász, L., Large Networks and Graph Limits (2012) · Zbl 1292.05001
[12] Diaconis, P.; Janson, S., Graph limits and exchangeable random graphs,, Rend. Mat. Appl., 28, 33-61 (2008) · Zbl 1162.60009
[13] Orbanz, P.; Roy, D. M., Bayesian models of graphs, arrays and other exchangeable random structures, IEEE Trans. Pattern Anal. Mach. Intell., 37, 437-461 (2014)
[14] Caron, F.; Fox, E. B., Sparse graphs using exchangeable random measures, J. R. Stat. Soc. Ser. B Stat. Methodol., 79, 1295-1366 (2017) · Zbl 1381.62072
[15] Veitch, V.; Roy, D. M.
[16] Crane, H.; Dempsey, W., Edge exchangeable models for interaction networks, J. Am. Stat. Assoc., 113, 1311-1326 (2018) · Zbl 1402.90027
[17] Crane, H.; Dempsey, W., Relational exchangeability, J. Appl. Probab., 56, 192-208 (2019) · Zbl 1418.60027
[18] Crane, H.; Towsner, H., Relatively exchangeable structures, J. Symbolic Logic, 83, 416-442 (2018) · Zbl 1496.03160
[19] Hoff, P. D.; Raftery, A. E.; Handcock, M. S., Latent space approaches to social network analysis, J. Am. Stat. Assoc., 97, 1090-1098 (2002) · Zbl 1041.62098
[20] Gormley, I. C.; Murphy, T. B., A mixture of experts latent position cluster model for social network data, Stat. Methodol., 7, 385-405 (2010) · Zbl 1233.62205
[21] Handcock, M. S.; Raftery, A. E.; Tantrum, J. M., Model-based clustering for social networks, J. R. Stat. Soc. Ser. A Stat. Soc., 170, 301-354 (2007)
[22] Hoff, P. D., Bilinear mixed-effects models for dyadic data, J. Am. Stat. Assoc., 100, 286-295 (2005) · Zbl 1117.62353
[23] Krivitsky, P. N.; Handcock, M. S.; Raftery, A. E.; Hoff, P. D., Representing degree distributions, clustering, and homophily in social networks with latent cluster random effects models, Soc. Netw., 31, 204-213 (2009)
[24] Holland, P. W.; Laskey, K. B.; Leinhardt, S., Stochastic blockmodels: First steps, Soc. Netw., 5, 109-137 (1983)
[25] Karrer, B.; Newman, M. E., Stochastic blockmodels and community structure in networks, Phys. Rev. E, 83, 016107 (2011)
[26] Nowicki, K.; Snijders, T. A. B., Estimation and prediction for stochastic blockstructures, J. Am. Stat. Assoc., 96, 1077-1087 (2001) · Zbl 1072.62542
[27] Airoldi, E. M.; Blei, D. M.; Fienberg, S. E.; Xing, E. P., Mixed membership stochastic blockmodels, J. Mach. Learn. Res., 9, 1981-2014 (2008) · Zbl 1225.68143
[28] Banerjee, A.; Chandrasekhar, A.; Duflo, E.; Jackson, M., The diffusion of microfinance, Science, 341, 1236498 (2013)
[29] White, H. C.; Boorman, S. A.; Breiger, R. L., Social structure from multiple networks. I. Blockmodels of roles and positions, Am. J. Soc., 81, 730-780 (1976)
[30] Boorman, S. A.; White, H. C., Social structure from multiple networks. II. Role structures, Am. J. Soc., 81, 1384-1446 (1976)
[31] Gould, R. V., Multiple networks and mobilization in the Paris Commune, 1871, Am. Sociol. Rev., 56, 716-729 (1991)
[32] Padgett, J. F.; Ansell, C. K., Robust action and the rise of the Medici, 1400-1434, Am. J. Soc., 98, 1259-1319 (1993)
[33] Granovetter, M., Economic action and social structure: The problem of embeddedness, Am. J. Soc., 91, 481-510 (1985)
[34] Baldassarri, D.; Diani, M., The integrative power of civic networks, Am. J. Soc., 113, 735-780 (2007)
[35] Grossmann, M.; Dominguez, C. B., Party coalitions and interest group networks, Am. Polit. Res., 37, 767-800 (2009)
[36] Maggioni, M. A.; Breschi, S.; Panzarasa, P., Multiplexity, growth mechanisms and structural variety in scientific collaboration networks, Ind. Innov., 20, 185-194 (2013)
[37] Rank, O. N.; Robins, G. L.; Pattison, P. E., Structural logic of intraorganizational networks, Organ. Sci., 21, 745-764 (2010)
[38] Ferriani, S.; Fonti, F.; Corrado, R., The social and economic bases of network multiplexity: Exploring the emergence of multiplex ties, Strateg. Organ., 11, 7-34 (2013)
[39] Shipilov, A. V.; Li, S. X., The missing link: The effect of customers on the formation of relationships among producers in the multiplex triads, Organ. Sci., 23, 472-491 (2012)
[40] Stojkosk, V.; Utkovski, Z.; Andre, E.; Kocarev, L., The role of multiplex network structure in cooperation through generalized reciprocity, Phys. A Stat. Mech. Appl., 531, 121805 (2019) · Zbl 07569486
[41] Rijsewijk, L. G.; Snijders, T. A.; Dijkstra, J. K.; Steglich, C.; Veenstra, R., The interplay between adolescents’ friendships and the exchange of help: A longitudinal multiplex social network study, J. Res. Adolesc.
[42] Schaeffer, S. E., Graph clustering, Comput. Sci. Rev., 1, 27-64 (2007) · Zbl 1302.68237
[43] Young, J.; St-Onge, G.; Desrosiers, P.; Dube, L., Universality of the stochastic block model, Phys. Rev. E, 98, 032309 (2018)
[44] Abbe, E., Community detection and stochastic block models: Recent developments, J. Mach. Learn. Res., 18, 1-86 (2018) · Zbl 1403.62111
[45] Lee, C.; Wilkinson, D. J.
[46] Stanley, N.; Shai, S.; Taylor, D.; Mucha, P. J., Clustering network layers with the strata multilayer stochastic block model, IEEE Trans. Netw. Sci. Eng., 3, 95-105 (2016)
[47] Barbillon, P.; Donnet, S.; Lazega, E.; Bar-Hen, A., Stochastic block models for multiplex networks: An application to a multilevel network of researchers, J. R. Stat. Soc. Ser. A Stat. Soc., 180, 295-314 (2017)
[48] Valles-Catala, T.; Massucci, F. A.; Guimera, R.; Sales-Pardo, M., Multilayer stochastic block models reveal the multilayer structure of complex networks, Phys. Rev. X, 6, 011036 (2016)
[49] Lancichinetti, A.; Fortunato, S., Consensus clustering in complex networks, Sci. Rep., 2, 336 (2012)
[50] Cantini, L.; Medico, E.; Fortunato, S.; Caselle, M., Detection of gene communities in multi-networks reveals cancer drivers, Sci. Rep., 5, 17386 (2015)
[51] Vega-Pons, S.; Shulcloper, J. R., A survey of clustering ensemble algorithms, Intern. J. Pattern Recognit. Artif. Intell., 25, 337-372 (2011)
[52] Bersanelli, M.; Mosca, E.; Remondini, D.; Giampieri, E.; Sala, C.; Castellani, G.; Milanesi, L., Methods for the integration of multi-omics data: Mathematical aspects, BMC Bioinform., 17, S15 (2016)
[53] Macaulay, I. C.; Ponting, C. P.; Voet, T., Single-cell multiomics: Multiple measurements from single cells, Trends Genet., 33, 155-168 (2017)
[54] Huang, S.; Chaudhary, K.; Garmire, L. X., More is better: Recent progress in multi-omics data integration methods, Front. Genet., 8, 84 (2017)
[55] Lock, E. F.; Dunson, D. B., Bayesian consensus clustering, Bioinformatics, 29, 2610-2616 (2013)
[56] Yang, C. N., Symmetry and physics, Proc. Am. Philos. Soc., 140, 267-288 (1996)
[57] Gross, D. J., The role of symmetry in fundamental physics, Proc. Natl. Acad. Sci. U.S.A., 93, 14256-14259 (1996)
[58] Cifarelli, D. M.; Regazzini, E., De Finetti’s contribution to probability and statistics, Stat. Sci., 11, 253-282 (1996) · Zbl 0955.01552
[59] Good, I. J., Good Thinking: The Foundations of Probability and Its Applications (1983) · Zbl 0583.60001
[60] De Finetti, B., Philosophical Lectures on Probability: Collected, Edited, and Annotated by Alberto Mura (2008) · Zbl 1236.00017
[61] Amati, V.; Lomi, A.; Mira, A., Social network modeling, Annu. Rev. Stat. Appl., 5, 343-369 (2018)
[62] Aldous, D. J., Representations for partially exchangeable arrays of random variables, J. Multivar. Anal., 11, 581-598 (1981) · Zbl 0474.60044
[63] Hoover, D. N., “Relations on probability spaces and arrays of random variables,” preprint, Institute for Advanced Study, Princeton, NJ 2 (1979).
[64] Bishop, C. M., Pattern Recognition and Machine Learning (2006) · Zbl 1107.68072
[65] Hastings, W. K., Monte Carlo sampling methods using Markov chains and their applications, Biometrika, 57, 97-109 (1970) · Zbl 0219.65008
[66] Geman, S. and Geman, D., “Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images,” in Readings in Computer Vision (Elsevier, 1987), pp. 564-584. · Zbl 0573.62030
[67] Hoff, P., “Modeling homophily and stochastic equivalence in symmetric relational data,” in Advances in Neural Information Processing Systems (Curran Associates, New York, 2008), pp. 657-664.
[68] Fortunato, S., Community detection in graphs, Phys. Rep., 486, 75-174 (2010)
[69] Kumar, R.; Colin, C.; Hartikainen, A.; Martin, O. A., ArviZ a unified library for exploratory analysis of Bayesian models in Python, J. Open Source Soft., 4, 1143 (2019)
[70] Magnani, M.; Micenkova, B.; Rossi, L.
[71] Lazega, E., The Collegial Phenomenon: The Social Mechanisms of Cooperation among Peers in a Corporate Law Partnership (2001)
[72] Box, G. E. P.; Draper, N. R., Response Surfaces, Mixtures, and Ridge Analyses (2007) · Zbl 1267.62006
[73] Todeschini, A.; Miscouridou, X.; Caron, F.
[74] Herlau, T., Schmidt, M. N., and Mørup, M., “Completely random measures for modelling block-structured sparse networks,” in Advances in Neural Information Processing Systems (Curran Associates, New York, 2016), pp. 4260-4268.
[75] Cai, D., Campbell, T., and Broderick, T., “Edge-exchangeable graphs and sparsity,” in Advances in Neural Information Processing Systems (Curran Associates, New York, 2016), pp. 4249-4257.
[76] Daudin, J.-J.; Picard, F.; Robin, S., A mixture model for random graphs, Stat. Comput., 18, 173-183 (2008)
[77] Latouche, P.; Birmele, E.; Ambroise, C., Variational Bayesian inference and complexity control for stochastic block models, Stat. Model., 12, 93-115 (2012) · Zbl 1420.62114
[78] Ishiguro, K.; Sato, I.; Ueda, N.
[79] Wainwright, M. J.; Jordan, M. I., Graphical models, exponential families, and variational inference, Found. Trends Mach. Learn., 1, 1-305 (2008) · Zbl 1193.62107
[80] Hoffman, M. and Blei, D., “Stochastic structured variational inference,” in Artificial Intelligence and Statistics (Proceedings of Machine Learning Research, 2015), pp. 361-369.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.