×

Computational approaches and analysis for a spatio-structural-temporal invasive carcinoma model. (English) Zbl 1390.92066

Summary: Spatio-temporal models have long been used to describe biological systems of cancer, but it has not been until very recently that increased attention has been paid to structural dynamics of the interaction between cancer populations and the molecular mechanisms associated with local invasion. One system that is of particular interest is that of the urokinase plasminogen activator (uPA) wherein uPA binds uPA receptors on the cancer cell surface, allowing plasminogen to be cleaved into plasmin, which degrades the extracellular matrix and this way leads to enhanced cancer cell migration. In this paper, we develop a novel numerical approach and associated analysis for spatio-structuro-temporal modelling of the uPA system for up to two-spatial and two-structural dimensions. This is accompanied by analytical exploration of the numerical techniques used in simulating this system, with special consideration being given to the proof of stability within numerical regimes encapsulating a central differences approach to approximating numerical gradients. The stability analysis performed here reveals instabilities induced by the coupling of the structural binding and proliferative processes. The numerical results expound how the uPA system aids the tumour in invading the local stroma, whilst the inhibitor to this system may impede this behaviour and encourage a more sporadic pattern of invasion.

MSC:

92C50 Medical applications (general)
22E46 Semisimple Lie groups and their representations
53C35 Differential geometry of symmetric spaces
57S20 Noncompact Lie groups of transformations
92C37 Cell biology
92D25 Population dynamics (general)
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Adam J, Bellomo N (1996) A survey of models for tumor-immune system dynamics. Birkhäuser, Boston · Zbl 0874.92020
[2] Adam L, Mazumdar A, Sharma T, Jones TR, Kumar R (2001) A three-dimensional and temporo-spatial model to study invasiveness of cancer cells by heregulin and prostaglandin e \[_22\]. Cancer Res 61:81-87
[3] Allen EJ (2009) Derivation of stochastic partial differential equations for size- and age-structured populations. J Biol Dyn 3(1):73-86. https://doi.org/10.1080/17513750802162754 · Zbl 1157.60331 · doi:10.1080/17513750802162754
[4] Al-Omari J, Gourley S (2002) Monotone travelling fronts in an age-structured reaction-diffusion model of a single species. J Math Biol 45(4):294-312. https://doi.org/10.1007/s002850200159 · Zbl 1013.92032 · doi:10.1007/s002850200159
[5] Andasari V, Gerisch A, Lolas G, South AP, Chaplain MAJ (2011) Mathematical modeling of cancer cell invasion of tissue: biological insight from mathematical analysis and computational simulation. J Math Biol 63(1):141-171. https://doi.org/10.1007/s00285-010-0369-1 · Zbl 1230.92022 · doi:10.1007/s00285-010-0369-1
[6] Anderson A, Chaplain MAJ (1998) Continuous and discrete mathematical models of tumor-induced angiogenesis. Bull Math Biol 60(5):857-899 · Zbl 0923.92011 · doi:10.1006/bulm.1998.0042
[7] Anderson ARA, Chaplain MAJ, Newman EL et al (2000) Mathematical modelling of tumour invasion and metastasis. J Theor Med 2(2):129-154 · Zbl 0947.92012 · doi:10.1080/10273660008833042
[8] Ayati BP (2006) A structured-population model of proteus mirabilis swarm-colony development. J Math Biol 52(1):93-114. https://doi.org/10.1007/s00285-005-0345-3 · Zbl 1091.92058 · doi:10.1007/s00285-005-0345-3
[9] Barinka C, Parry G, Callahan J et al (2006) Structural basis of interaction between urokinase-type plasminogen activator and its receptor. J Mol Biol 363(2):482-495 · doi:10.1016/j.jmb.2006.08.063
[10] Basse B, Ubezio P (2007) A generalised age- and phase-structured model of human tumour cell populations both unperturbed and exposed to a range of cancer therapies. Bull Math Biol 69(5):1673-1690 · Zbl 1298.92047 · doi:10.1007/s11538-006-9185-6
[11] Bellomo N, Preziosi L (2000) Modelling and mathematical problems related to tumor evolution and its interaction with the immune system. Math Comput Model 32:413-452 · Zbl 0997.92020 · doi:10.1016/S0895-7177(00)00143-6
[12] Bellomo N, Li NK, Maini PK (2008) On the foundations of cancer modelling: selected topics, speculations, and perspectives. Math Models Methods Appl Sci 18(4):593-646 · Zbl 1151.92014 · doi:10.1142/S0218202508002796
[13] Benzekry S, Lamont C, Beheshti A et al (2014) Classical mathematical models for description and prediction of experimental tumor growth. PLoS Comput Biol 10(8):e1003,800 · doi:10.1371/journal.pcbi.1003800
[14] Bertuzzi A, D’Onofrio A, Fasano A, Gandolfi A (2004) Modelling cell populations with spatial structure: steady state and treatment-induced evolution of tumour cords. Discrete Contin Dyn Syst Ser B 4(1):161-186 · Zbl 1047.35135
[15] Bhuvarahamurthy V, Schroeder J, Kristiansen G et al (2005) Differential gene expression of urokinase-type plasminogen activator and its receptor in human renal cell carcinoma. Oncol Rep 14(3):777-782
[16] Bianchi E, Ferrero E, Fazioli F, Mangili F, Wang J, Bender JR, Blasi F, Pardi R (1996) Integrin-dependent induction of functional urokinase receptors in primary t lymphocytes. J Clin Investig 98(5):1133-1141 · doi:10.1172/JCI118896
[17] Binder BR, Mihaly J, Prager GW (2007) uPAR-uPA-uPAI-1 interactions and signalling: a vascular biologist’s view. Int J Vasc Biol Med 97:336-342
[18] Busenberg S, Iannelli M (1983) A class of nonlinear diffusion problems in age-dependent population dynamics. Nonlinear Anal Theory Methods Appl 7(5):501-529. https://doi.org/10.1016/0362-546X(83)90041-X · Zbl 0528.92016 · doi:10.1016/0362-546X(83)90041-X
[19] Calsina À, Saldaña J (1995) A model of physiologically structured population dynamics with a nonlinear individual growth rate. J Math Biol 33(4):335-364. https://doi.org/10.1007/BF00176377 · Zbl 0828.92025 · doi:10.1007/BF00176377
[20] Chaplain MAJ, Lolas G (2005) Mathematical modelling of cancer cell invasion of tissue: the role of the urokinase plasminogen activation system. Math. Models Methods Appl Sci 11(2005):1685-1734 · Zbl 1094.92039 · doi:10.1142/S0218202505000947
[21] Chaplain MAJ, Ganesh M, Graham IG (2001) Spatio-temporal pattern formation on spherical surfaces: numerical simulation and application to solid tumour growth. J Math Biol 42(5):387-423 · Zbl 0988.92003 · doi:10.1007/s002850000067
[22] Chapman SJ, Plank MJ, James A, Basse B (2007) A nonlinear model of age and size-structured populations with applications to cell cycles. ANZIAM J 49(02):151 · Zbl 1145.37042 · doi:10.1017/S144618110001275X
[23] Chapman A, del Ama LF, Ferguson J, Kamarashev J, Wellbrock C, Huristone A (2014) Heterogeneous tumour subpopulations cooperate to drive invasion. Cell Rep 8:688-695 · doi:10.1016/j.celrep.2014.06.045
[24] Chaurasia P, Aguirre-Ghiso JA, Liang OD et al (2006) A region in Urokinase plasminogen receptor domain III controlling a functional association with 5beta1 integrin and tumor growth. J Biol Chem 281(21):14852-14863 · doi:10.1074/jbc.M512311200
[25] Clayton D, Schifflers E (1987) Models for temporal variation in cancer rates. I: age-period and age-cohort models. Stat Med 6(4):449-467 · doi:10.1002/sim.4780060405
[26] Cushing JM (1998) An introduction to structured population dynamics. In: CBMS-NSF regional conference series in applied mathematics, vol 71. SIAM . https://doi.org/10.1137/1.9781611970005.ch2 · Zbl 0939.92026
[27] Cusulin C, Iannelli M, Marinoschi G (2005) Age-structured diffusion in a multi-layer environment. Nonlinear analysis: real world applications 6(1):207-223. https://doi.org/10.1016/j.nonrwa.2004.08.006 · Zbl 1090.35061 · doi:10.1016/j.nonrwa.2004.08.006
[28] Danø K, Andreasen P, Grøndahl-Hansen J et al (1985) Plasminogen activators, tissue degradation, and cancer. Adv Cancer Res 44:139-266 · doi:10.1016/S0065-230X(08)60028-7
[29] Danø K, Rømer J, Nielsen BS, Bjørn S et al (1999) Cancer invasion and tissue remodeling-cooperation of protease systems and cell types. APMIS 107(1-6):120-127 · doi:10.1111/j.1699-0463.1999.tb01534.x
[30] Roos, AM; Tuljapurkar, S. (ed.); Caswell, H. (ed.), A gentle introduction to physiologically structured population models, No. 18, 119-204 (1997), US · doi:10.1007/978-1-4615-5973-3_5
[31] Delgado M, Molina-Becerra M, Suárez A (2006) A nonlinear age-dependent model with spatial diffusion. J Math Anal Appl 313(1):366-380. https://doi.org/10.1016/j.jmaa.2005.09.042 · Zbl 1116.35062 · doi:10.1016/j.jmaa.2005.09.042
[32] Delitala M, Lorenzi T (2012) Asymptotic dynamics in continuous structured populations with mutations, competition and mutualism. J Math Anal Appl 389:439-451. https://doi.org/10.1016/j.jmaa.2011.11.076 · Zbl 1232.37044 · doi:10.1016/j.jmaa.2011.11.076
[33] Delitala M, Lorenzi T, Melensi M (2015) Competition between cancer cells and t cells under immunotherapy: a structured population approach. In: ITM web of conferences, vol 5. https://doi.org/10.1051/itmconf/20150500005
[34] Deng Q, Hallam TG (2006) An age structured population model in a spatially heterogeneous environment: existence and uniqueness theory. Nonlinear Anal Theory Methods Appl 65(2):379-394. https://doi.org/10.1016/j.na.2005.06.019 · Zbl 1098.35072 · doi:10.1016/j.na.2005.06.019
[35] Di Blasio G (1979) Non-linear age-dependent population diffusion. J Math Biol 8(3):265-284. https://doi.org/10.1007/BF00276312 · Zbl 0426.92017 · doi:10.1007/BF00276312
[36] Diekmann O, Temme NM (eds.) (1982) Nonlinear diffusion problems. No. 28 in MC syllabus. Mathematisch Centrum, Amsterdam
[37] Diekmann O, Metz JAJ (1994) On the reciprocal relationship between life histories and population dynamics. In: Lecture notes in biomathematics, Chapter Frontiers in mathematical biology, vol 100. Springer, Berlin, pp 263-279 · Zbl 0818.92015
[38] Diekmann O, Heijmans HJAM, Thieme HR (1984) On the stability of the cell size distribution. J Math Biol 19(2):227-248 · Zbl 0543.92021 · doi:10.1007/BF00277748
[39] Diekmann O, Gyllenberg M, Metz JAJ, Thieme H (1992) The ’cumulative’ formulation of (physiologically) structured population models. CWI, Amsterdam · Zbl 0795.92021
[40] Domschke P, Trucu D, Gerisch A et al (2014) Mathematical modelling of cancer invasion: implications of cell adhesion variability for tumour infiltrative growth patterns. J Theor Biol 361:41-60 · Zbl 1303.92043 · doi:10.1016/j.jtbi.2014.07.010
[41] Domschke P, Trucu D, Gerisch A et al (2017) Structured models of cell migration incorporating molecular binding processes. J Math Biol 75:1517-1561. https://doi.org/10.1007/s00285-017-1120-y · Zbl 1373.35317 · doi:10.1007/s00285-017-1120-y
[42] Dufau I, Frongia C, Sicard F, Dedieu L et al (2012) Multicellular tumor spheroid model to evaluate spatio-temporal dynamics effect of chemotherapeutics: application to the gemcitabine/CHK1 inhibitor combination in pancreatic cancer. BMC Cancer 12(1):15 · doi:10.1186/1471-2407-12-15
[43] Duffy MJ, Maguire TM, McDermott EW et al (1999) Urokinase plasminogen activator: a prognostic marker in multiple types of cancer. J Surg Oncol 71(2):130-135 · doi:10.1002/(SICI)1096-9098(199906)71:2<130::AID-JSO14>3.0.CO;2-9
[44] Dyson J, Webb G (2000a) A nonlinear age and maturity structured model of population dynamics i. Basic theory. J Math Anal Appl 242:93-104 · Zbl 0978.92019 · doi:10.1006/jmaa.1999.6656
[45] Dyson J, Webb G (2000b) A nonlinear age and maturity structured model of population dynamics ii. Chaos. J Math Anal Appl 242:255-270 · Zbl 0978.92020 · doi:10.1006/jmaa.1999.6657
[46] Ellis V, Danø K (1993) Potentiation of plasminogen activation by an anti-urokinase monoclonal antibody due to ternary complex formation. A mechanistic model for receptor-mediated plasminogen activation. J Biol Chem 268(7):4806-13
[47] Fitzgibbon W, Parrott M, Webb G (1995) Diffusion epidemic models with incubation and crisscross dynamics. Math Biosci 128(1-2):131-155. https://doi.org/10.1016/0025-5564(94)00070-G · Zbl 0836.92018 · doi:10.1016/0025-5564(94)00070-G
[48] Galle J, Hoffmann M, Aust G (2009) From single cells to tissue architecture—a bottom-up approach to modelling the spatio-temporal organisation of complex multi-cellular systems. J Math Biol 58(1-2):261-283 · Zbl 1161.92021 · doi:10.1007/s00285-008-0172-4
[49] Garroni MG, Langlais M (1982) Age-dependent population diffusion with external constraint. J Math Biol 14(1):77-94. https://doi.org/10.1007/BF02154754 · Zbl 0506.92018 · doi:10.1007/BF02154754
[50] Gatenby RA, Gawlinski ET (1996) A reaction-diffusion model of cancer invasion. Cancer Res 56(24):5745-5753
[51] Gerisch A, Chaplain M (2008) Mathematical modelling of cancer cell invasion of tissue: local and non-local models and the effect of adhesion. J Theor Biol 250(4):684-704 · Zbl 1397.92326 · doi:10.1016/j.jtbi.2007.10.026
[52] Godár S, Hořejší V, Weidle UH et al (1999) M6P/IGFII-receptor complexes urokinase receptor and plasminogen for activation of transforming growth factor-\[ \beta\] β1. Eur J Immunol 29(3):1004-1013 · doi:10.1002/(SICI)1521-4141(199903)29:03<1004::AID-IMMU1004>3.0.CO;2-Q
[53] Gurtin M, MacCamy R (1981) Diffusion models for age-structured populations. Math Biosci 54(1-2):49-59. https://doi.org/10.1016/0025-5564(81)90075-4 · Zbl 0459.92015 · doi:10.1016/0025-5564(81)90075-4
[54] Gyilenberg M, Webb GF (1990) A nonlinear structured population model of tumor growth with quiescence. J Math Biol 28:671-694 · Zbl 0744.92026 · doi:10.1007/BF00160231
[55] Gyllenberg M (1982) Nonlinear age-dependent population dynamics in continuously propagated bacterial cultures. Math Biosci 62(1):45-74. https://doi.org/10.1016/0025-5564(82)90062-1 · Zbl 0495.92017 · doi:10.1016/0025-5564(82)90062-1
[56] Gyllenberg M (1986) The size and scar distributions of the yeast saccharomyces cerevisiae. J Math Biol 24(1):81-101. https://doi.org/10.1007/BF00275722 · Zbl 0593.92016 · doi:10.1007/BF00275722
[57] Gyllenberg M, Webb G (1987) Age-size structure in populations with quiescence. Math Biosci 86(1):67-95. https://doi.org/10.1016/0025-5564(87)90064-2 · Zbl 0632.92014 · doi:10.1016/0025-5564(87)90064-2
[58] Hanahan D, Weinberg RA (2011) The hallmarks of cancer: the next generation. Cell 144:646-674 · doi:10.1016/j.cell.2011.02.013
[59] Hsieh, YH; Arnino, O. (ed.); Axelrod, DE (ed.); Kimmel, M. (ed.), Altruistic population model with sex differences, No. 131 (1991), New York
[60] Huai Q, Mazar AP, Kuo A, Parry GC et al (2006) Structure of human urokinase plasminogen activator in complex with its receptor. Science (New York, N.Y.) 311(5761):656-659 · doi:10.1126/science.1121143
[61] Huang C (1994) An age-dependent population model with nonlinear diffusion in \[\mathbf{R}^nRn\]. Q Appl Math 52:377-398 · Zbl 0810.92025 · doi:10.1090/qam/1276244
[62] Huyer W (1994) A size-structured population-model with dispersion. J Math Anal Appl 181(3):716-754. https://doi.org/10.1006/jmaa.1994.1054 · Zbl 0841.92022 · doi:10.1006/jmaa.1994.1054
[63] Khanna M, Wang F, Jo I et al (2011) Targeting multiple conformations leads to small molecule inhibitors of the uPAR \[\cdot \]·uPA protein-protein interaction that block cancer cell invasion. ACS Chem Biol 9(11):1232-1243. https://doi.org/10.1021/cb200180m
[64] Kimmel M, Darzynkiewicz Z, Arino O, Traganos F (1984) Analysis of a cell cycle model based on unequal division of metabolic constituents to daughter cells during cytokinesis. J Theor Biol 110:637-664 · doi:10.1016/S0022-5193(84)80149-6
[65] Kondraganti S, Gondi CS, McCutcheon I et al (2006) RNAi-mediated downregulation of urokinase plasminogen activator and its receptor in human meningioma cells inhibits tumor invasion and growth. Int J Oncol 28(6):1353-1360
[66] Kunisch K, Schappacher W, Webb G (1985) Nonlinear age-dependent population dynamics with random diffusion. Comput Math Appl 11(1-3):155-173 · Zbl 0581.92021 · doi:10.1016/0898-1221(85)90144-0
[67] Langlais M (1988) Large time behavior in a nonlinear age-dependent population dynamics problem with spatial diffusion. J Math Biol 26(3):319-346. https://doi.org/10.1007/BF00277394 · Zbl 0713.92019 · doi:10.1007/BF00277394
[68] Langlais M, Milner FA (2003) Existence and uniqueness of solutions for a diffusion model of host-parasite dynamics. J Math Anal Appl 279(2):463-474. https://doi.org/10.1016/S0022-247X(03)00020-9 · Zbl 1036.35097 · doi:10.1016/S0022-247X(03)00020-9
[69] Leksa V, Godar S, Cebecauer M et al (2002) The N terminus of mannose 6-phosphate/insulin-like growth factor 2 receptor in regulation of fibrinolysis and cell migration. J Biol Chem 277(43):40575-40582 · doi:10.1074/jbc.M207979200
[70] Li Y, Cozzi P (2007) Targeting uPA/uPAR in prostate cancer. Cancer Treat Rev 33(6):521-527 · doi:10.1016/j.ctrv.2007.06.003
[71] Liang X, Yang X, Tang Y et al (2008) RNAi-mediated downregulation of urokinase plasminogen activator receptor inhibits proliferation, adhesion, migration and invasion in oral cancer cells. Oral Oncol 44(12):1172-1180 · doi:10.1016/j.oraloncology.2008.03.004
[72] Liu D, Ghiso JA, Estrada Y et al (2002) EGFR is a transducer of the urokinase receptor initiated signal that is required for in vivo growth of a human carcinoma. Cancer Cell 1(5):445-457 · doi:10.1016/S1535-6108(02)00072-7
[73] Lorz A, Lorenzi T, Hochberg ME, Clairambault J, Perthame B (2013) Populational adaptive evolution, chemotherapeutic resistance and multiple anti-cancer therapies. ESAIM Math Model Numer Anal 47:377-399. https://doi.org/10.1051/m2an/2012031 · Zbl 1274.92025 · doi:10.1051/m2an/2012031
[74] MacCamy R (1981) A population model with nonlinear diffusion. J Differ Equ 39(1):52-72. https://doi.org/10.1016/0022-0396(81)90083-8 · Zbl 0458.92012 · doi:10.1016/0022-0396(81)90083-8
[75] Madsen DH, Engelholm LH, Ingvarsen S et al (2007) Extracellular collagenases and the endocytic receptor, urokinase plasminogen activator receptor-associated protein/Endo180, cooperate in fibroblast-mediated collagen degradation. J Biol Chem 282(37):27037-27045 · doi:10.1074/jbc.M701088200
[76] Magal P, Ruan S (eds) (2008) Structured population models in biology and epidemiology. Springer, Berlin · Zbl 1138.92029
[77] Meinzer H, Sandblad B (1985) A simulation model for studies of intestine cell dynamics. Comput Methods Progr Biomed 21(2):89-98 · doi:10.1016/0169-2607(85)90067-7
[78] Metz JAJ, Diekmann O (1986) A gentle introduction to structured population models: three worked examples. In: Lecture notes in biomathematics, vol 68, chap. The dynamics of physiologically structured populations, pp 3-45. Springer, Berlin · Zbl 1047.35135
[79] Murray JD, Oster GF (1984) Cell traction models for generating pattern and form in morphogenesis. J Math Biol 19(3):265-279 · Zbl 0536.92001 · doi:10.1007/BF00277099
[80] Peng PL, Hsieh YS, Wang CJ et al (2006) Inhibitory effect of berberine on the invasion of human lung cancer cells via decreased productions of urokinase-plasminogen activator and matrix metalloproteinase-2. Toxicol Appl Pharmacol 214(1):8-15 · doi:10.1016/j.taap.2005.11.010
[81] Peng L, Trucu D, Lin P et al (2017) A multiscale mathematical model of tumour invasive growth. Bull Math Biol 79:389-429. https://doi.org/10.1007/s11538-016-0237-2 · Zbl 1373.92065 · doi:10.1007/s11538-016-0237-2
[82] Persson M, Madsen J, Østergaard S et al (2012) 68Ga-labeling and in vivo evaluation of a uPAR binding DOTA- and NODAGA-conjugated peptide for PET imaging of invasive cancers. Nucl Med Biol 39(4):560-569 · doi:10.1016/j.nucmedbio.2011.10.011
[83] Perthame B (2007) Transport equations in biology. Birkhauser Verlag, Basel · Zbl 1185.92006
[84] Prigogine I, Lefever R (1980) Stability problems in cancer growth and nucleation. Comp Biochem Physiol Part B Comp Biochem 67(3):389-393 · doi:10.1016/0305-0491(80)90326-0
[85] Rhandi A (1998) Positivity and stability for a population equation with diffusion on \[l^1\] l1. Positivity 2(2):101-113. https://doi.org/10.1023/A:1009721915101 · Zbl 0918.34058 · doi:10.1023/A:1009721915101
[86] Rijken DC (1995) 2 Plasminogen activators and plasminogen activator inhibitors: biochemical aspects. Bailliere’s Clin Haematol 8(2):291-312 · doi:10.1016/S0950-3536(05)80269-0
[87] Sinko JW, Streifer W (1967) A new model for age-size structure of a population. Ecology 48(6):910-918. https://doi.org/10.2307/1934533 · doi:10.2307/1934533
[88] Smith HW, Marshall CJ (2010) Regulation of cell signalling by uPAR. Nat Rev Mol Cell Biol 11(1):23-36 · doi:10.1038/nrm2821
[89] So JWH, Wu J, Zou X (2001) A reaction-diffusion model for a single species with age structure. I travelling wavefronts on unbounded domains. Proc R Soc Lond Ser A Math Phys Eng Sci 457(2012):1841-1853. https://doi.org/10.1098/rspa.2001.0789 · Zbl 0999.92029 · doi:10.1098/rspa.2001.0789
[90] Stillfried GE, Saunders DN, Ranson M et al (2007) Plasminogen binding and activation at the breast cancer cell surface: the integral role of urokinase activity. Breast Cancer Res 9(1):R14 · doi:10.1186/bcr1647
[91] Sugioka K, Kodama A, Okada K et al (2013) TGF-\[ \beta\] β2 promotes RPE cell invasion into a collagen gel by mediating urokinase-type plasminogen activator (uPA) expression. Exp Eye Res 115:13-21 · doi:10.1016/j.exer.2013.06.020
[92] Trucco E (1965a) Mathematical models for cellular systems the von foerster equation. Part i. Bull Math Biophys 27(3):285-304. https://doi.org/10.1007/BF02478406 · doi:10.1007/BF02478406
[93] Trucco E (1965b) Mathematical models for cellular systems. The von foerster equation. Part ii. Bull Math Biophys 27(4):449-471. https://doi.org/10.1007/BF02476849 · doi:10.1007/BF02476849
[94] Trucu D, Lin P, Chaplain MAJ, Wang Y (2013) A multiscale moving boundary model arising in cancer invasion. Multiscale Model Simul 11(1):309-335 · Zbl 1302.35379 · doi:10.1137/110839011
[95] Trucu D, Domschke P, Gerisch A, Chaplain MAJ (2017) Multiscale computational modelling and analysis of cancer invasion. In: Springer lecture notes in mathematics, CIME foundation subseries, vol 2167, pp 275-310. Springer · Zbl 1353.92056
[96] Tucker SL, Zimmerman SO (1988) A nonlinear model of population dynamics containing an arbitrary number of continuous structure variables. SIAM J Appl Math 48(3):549-591. URL http://www.jstor.org/stable/2101595 · Zbl 0657.92011
[97] Waltz DA, Chapman HA (1994) Reversible cellular adhesion to vitronectin linked to urokinase receptor occupancy. J Biol Chem 269(20):14,746-50
[98] Waltz DA, Natkin LR, Fujita RM et al (1997) Plasmin and plasminogen activator inhibitor type 1 promote cellular motility by regulating the interaction between the urokinase receptor and vitronectin. J Clin Investig 100(1):58-67 · doi:10.1172/JCI119521
[99] Wei Y, Waltz DA, Rao N et al (1994) Identification of the urokinase receptor as an adhesion receptor for vitronectin. J Biol Chem 269(51):32,380-8
[100] Yamaguchi N, Mizutani T, Kawabata K, Haga H (2015) Leader cells regulate collective cell migration via rac activation in the downstream signaling of integrin \[\beta 1\] β1 and pi3k. Sci Rep 5(7656):1-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.