×

Multiple shooting-local linearization method for the identification of dynamical systems. (English) Zbl 1473.65086

Summary: The combination of the multiple shooting strategy with the generalized Gauss-Newton algorithm turns out in a recognized method for estimating parameters in ordinary differential equations (ODEs) from noisy discrete observations. A key issue for an efficient implementation of this method is the accurate integration of the ODE and the evaluation of the derivatives involved in the optimization algorithm. In this paper, we study the feasibility of the Local Linearization (LL) approach for the simultaneous numerical integration of the ODE and the evaluation of such derivatives. This integration approach results in a stable method for the accurate approximation of the derivatives with no more computational cost than that involved in the integration of the ODE. The numerical simulations show that the proposed Multiple Shooting-Local Linearization method recovers the true parameters value under different scenarios of noisy data.

MSC:

65L09 Numerical solution of inverse problems involving ordinary differential equations
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Chicone, C., Ordinary differential equations with applications (2006), Springer Verlag: Springer Verlag New York · Zbl 1120.34001
[2] Baake, E.; Baake, M.; Bock, H.; Briggs, K., Fitting ordinary differential equations to chaotic data, Phys Rev A, 45, 8, 5524-5529 (1992)
[3] Kallrath, J.; Schlöder, J.; Bock, H., Least squares parameter estimation in chaotic differential equations, Celest Mech Dyn Astron, 56, 353-371 (1993) · Zbl 0785.34034
[4] Voss, H.; Timmer, J.; Kurths, J., Nonlinear dynamical system identification from uncertain and indirect measurements, Int J Bifurc Chaos, 14, 6, 1905-1933 (2004) · Zbl 1129.93545
[5] Abarbanel, H.; Creveling, D., Dynamical state and parameter estimation, SIAM J Appl Dyn Syst, 8, 4, 1341-1381 (2009) · Zbl 1175.49026
[6] Ljung, L., System Identification: Theory for the User (1999), Prentice Hall PTR
[7] Konnur, R., Estimation of all model parameters of chaotic systems from discrete scalar time series measurements, Phys Lett A, 346, 4, 275-280 (2005)
[8] Yu, W.; Chen, G.; Cao, J.; Lü, J.; Parlitz, U., Parameter identification of dynamical systems from time series, Phys Rev E, 75, 6, 067201 (2007)
[9] Bock, H., Numerical treatment of inverse problems in chemical reaction kinetics, Model Chem React Syst, 18, 102-125 (1981)
[10] Bock, H., Recent advances in parameter identification techniques for ode, Numerical Treatment of Inverse Problems in Differential and Integral Equations, 95-121 (1983), Birkhäuser: Birkhäuser Boston · Zbl 0516.65067
[11] Cao, J.; Wang, L.; Xu, J., Robust estimation for ordinary differential equation models, Biometrics, 67, 4, 1305-1313 (2011) · Zbl 1274.62739
[12] Leineweber, D. B.D.; Schäfer, A.; Bock, H. G.; Schlöder, J. P.; Bauer, I., An efficient multiple shooting based reduced SQP strategy for large-scale dynamic process optimization. part 1: theoretical aspects, Comput Chem Eng, 27, 2, 157-166 (2003)
[13] Peifer, M.; Timmer, J., Parameter estimation in ordinary differential equations for biochemical processes using the method of multiple shooting, Syst Biol IET, 1, 2, 78-88 (2007)
[14] Varah, J., A spline least squares method for numerical parameter estimation in differential equations, SIAM J Sci Stat Comput, 3, 1, 28-46 (1982) · Zbl 0481.65050
[15] Ramsay, J.; Hooker, G., Parameter estimation for differential equations: a generalized smoothing approach, J Roy Stat Soc: Ser B, 69, 5, 741-796 (2007) · Zbl 07555374
[16] Brunel, N., Parameter estimation of ODE’s via nonparametric estimators, Electron J Stat, 2, 1242-1267 (2008) · Zbl 1320.62063
[17] Wu, H.; Xue, H.; Kumar, A., Numerical discretization-based estimation methods for ordinary differential equation models via penalized spline smoothing with applications in biomedical research, Biometrics, 68, 2, 344-352 (2012) · Zbl 1274.62906
[18] Hairer, E.; Norsett, S. P.; Wanner, G., Solving ordinary differential equations I. nonstiff problems (1987), Springer · Zbl 0638.65058
[19] Jimenez, J. C.; Biscay, R.; Mora, C.; Rodriguez, L. M., Dynamic properties of the local linearization method for initial-value problems, Appl Math Comput, 126, 1, 63-81 (2002) · Zbl 1046.34018
[20] Jimenez, J.; Carbonell, F., Rate of convergence of local linearization schemes for initial-value problems, Appl Math Comput, 171, 2, 1282-1295 (2005) · Zbl 1094.65074
[21] Pedroso, L.; Marrero, A.; de Arazoza, H., Nonlinear parametric model identification using genetic algorithms, (Mira, J.; Álvarez, J. R., Lecture Notes in Computer Sciences. Lecture Notes in Computer Sciences, Artificial Neural Nets Problem Solving Methods, vol. 2867 (2003), Springer), 473-480
[22] Donnet, S.; Samson, A., Estimation of parameters in incomplete data models defined by dynamical systems, J Stat Plan Inference, 137, 9, 2815-2831 (2007) · Zbl 1331.62099
[23] Ginart, J.; Marrero, A.; Baguer, M. L.; de Arazoza, H., Parameter estimation in HIV/AIDS epidemiological models, Rev Mat: Teor Apl, 17, 143-158 (2010)
[24] Carbonell, F.; Jimenez, J. C.; Biscay, R. J., A numerical method for the computation of the lyapunov exponents of nonlinear ordinary differential equations, Appl Math Comput, 131, 21-37 (2002) · Zbl 1032.34047
[25] Hartl, R. F.; Sethi, S. P.; Vickson, R. G., A survey of the maximum principles for optimal control problems with state constraints, SIAM Rev, 37, 2, 181-218 (1995) · Zbl 0832.49013
[26] Stoer, J., On the numerical solution of constrained least-squares problems, SIAM J Numer Anal, 8, 2, 382-411 (1971) · Zbl 0219.90039
[27] Hanson, R.; Haskell, K., Algorithm 587: two algorithms for the linearly constrained least squares problem, ACM Trans Math Softw, 8, 3, 323-333 (1982)
[28] Hanson, R., Linear least squares with bounds and linear constraints, SIAM J Sci Stat Comput, 7, 3, 826-834 (1986) · Zbl 0616.65044
[29] Deuflhard, P., A modified newton method for the solution of ill-conditioned systems of nonlinear equations with application to multiple shooting, Numer Math, 22, 289-315 (1974) · Zbl 0313.65070
[30] Al-Baali, M.; Fletcher, R., An efficient line search for nonlinear least squares, J Optim Theory Appl, 48, 3, 359-377 (1986) · Zbl 0562.90074
[31] Moré, J.; Thuente, D., Line search algorithms with guaranteed sufficient decrease, ACM Trans Math Softw, 20, 3, 286-307 (1994) · Zbl 0888.65072
[32] Zhang, H.; Hager, W., A non monotone line search technique and its application to unconstrained optimization, SIAM J Optim, 14, 4, 1043-1056 (2004) · Zbl 1073.90024
[33] Sotolongo, A.; Jiménez, J. C., Construction and study of local linearization adaptive codes for ordinary differential equations., Rev Mat: Teor Apl, 21, 1, 21-53 (2014) · Zbl 1316.65067
[34] Carbonell, F.; Jimenez, J. C.; Pedroso, L. M., Computing multiple integrals involving matrix exponentials, J Comput Appl Math, 213, 1, 300-305 (2008) · Zbl 1133.65012
[35] Golub, G. H.; Loan, C. F.V., Matrix Computations (1996), The Johns Hopkins University Press · Zbl 0865.65009
[36] Sidje, R. B., Expokit: a software package for computing matrix exponentials, ACM Trans Math Softw, 24, 1, 130-156 (1998) · Zbl 0917.65063
[37] Loan, C. V., Computing integrals involving the matrix exponential, IEEE Trans Autom Control, 23, 3, 395-404 (1978) · Zbl 0387.65013
[38] Rikitake, T., Oscillations of a system of disk dynamos, Math Proc Camb Philos Soc, 54, 1, 89-105 (1958) · Zbl 0087.23703
[39] Ito, K., Chaos in the rikitake two-disc dynamo system, Earth Planet Sci Lett, 51, 2, 451-456 (1980)
[40] De la Cruz, H.; Biscay, R. J.; Carbonell, F.; Ozaki, T.; Jimenez, J. C., A higher order local linearization method for solving ordinary differential equations, Appl Math Comput, 185, 1, 197-212 (2007) · Zbl 1115.65080
[41] Jimenez, J.; Sotolongo, A.; Sanchez-Bornot, J., Locally linearized runge kutta method of dormand and prince, Appl Math Comput, 247, 589-606 (2014) · Zbl 1338.65189
[42] Carbonell, F.; Jimenez, J. C.; Biscay, R. J.; De La Cruz, H., The local linearization method for numerical integration of random differential equations, BIT Numer Math, 45, 1, 1-14 (2005) · Zbl 1081.65013
[44] Jimenez, J. C.; Pedroso, L. M.; Carbonell, F.; Hernandez, V., Local linearization method for numerical integration of delay differential equations, SIAM J Numer Anal, 44, 6, 2584-2609 (2006) · Zbl 1154.34040
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.