×

Non-Fourier heat conduction in layered composite materials with an interface crack. (English) Zbl 1423.74050

Summary: This paper studies an interface crack in a two-layered composite media under an applied thermal flux by using the hyperbolic heat conduction equation. The problem is solved by Laplace transform and integral equation technique. It is found that the crack tip thermal flux is infinity and the singularity is described by the transient thermal flux intensity factor. The crack tip field is expressed in terms of the thermal flux intensity factor in closed-form. The solution of the problem is presented in non-dimensional form. A characteristic length parameter and a characteristic time parameter are identified to control the time-varying behavior of the thermal flux intensity factor. The results demonstrate that the crack considerably enhance the local thermal flux and temperature distributions. It is important to consider the non-Fourier effect in studying the thermally induced cracking problem in layered composite materials.

MSC:

74A40 Random materials and composite materials
74A15 Thermodynamics in solid mechanics
74R10 Brittle fracture
80A17 Thermodynamics of continua
80A20 Heat and mass transfer, heat flow (MSC2010)
74F05 Thermal effects in solid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Al-Nimr, M.A.; Naji, M.; Abdallah, R.I., Thermal behavior of a multi-layered thin slab carrying periodic signals under the effect of the dual-phase-lag heat conduction model, International journal of thermophysics, 25, 949-966, (2004)
[2] Asai, A., Bubble dynamics in boiling under high heat flux pulse heating, Heat transfer transactions ASME, 113, 973-979, (1991)
[3] Bourdillon, A.; Bourdillon, N.X.T., High temperature superconductors: processing and science, (1993), Academic San Diego, CA
[4] Brock, L.M.; Hanson, M.T., Transient analysis of a suddenly-opening crack in a coupled thermoelastic solid with thermal relaxation, Journal of mechanics of materials and structures, 1, 1257-1268, (2006)
[5] Carey, G.F.; Tsai, M., Hyperbolic heat transfer with reflection, Numerical heat transfer, 5, 309-327, (1982)
[6] Cattaneo, C., Sur une forme de l’equation de la chaleur eliminant le paradoxe d’ine propagation instantanee, Comptes rendus de l’ academie des sciences serie iia:sciences de la terre et des planets, 247, 431-433, (1958) · Zbl 1339.35135
[7] Chen, T.M., A hybrid green’s function method for the hyperbolic heat conduction problems, International journal of heat and mass transfer, 52, 4273-4278, (2009) · Zbl 1175.80004
[8] Chen, H.T.; Lin, J.Y., Numerical analysis for hyperbolic heat conduction, International journal of heat and mass transfer, 36, 2891-2898, (1993) · Zbl 0775.73332
[9] Davies, B.; Martin, B.J., Computer physics, 33, 1, (1979)
[10] Glass, D.E.; Ozisi, M.N.; McRae, D.S.; Vick, B., On the numerical solution of hyperbolic heat conduction, Numerical heat transfer, 8, 497-504, (1985)
[11] Glass, D.E.; Ozisik, M.N.; McRae, D.S.; Vick, B., Hyperbolic heat conduction with temperature-dependent thermal conductivity, Journal of applied physics, 59, 1861-1865, (1985)
[12] Gradshteyn, I.S.; Ryzhik, I.M., Tables of integrals, series and products, (1965), Acadeimic Press San Diego, CA
[13] Hosseini-Tehrani, P.; Hector, L.G.; Hetnarski, R.B.; Eslami, M.R., Boundary element formulation for thermal stresses during pulsed laser heating, Transactions ASME, journal of applied mechanics, 68, 480-489, (2001) · Zbl 1110.74704
[14] Kar, A.; Chan, C.T.; Mazumder, J., Comparative studies on nonlinear hyperbolic and parabolic heat conduction for various boundary conditions: analytical and numerical solutions, Heat transfer transactions ASME, 114, 114, (1992)
[15] Koay, A.L.; Pulko, S.H.; Wilkinson, A.J., Reverse time TLM modeling of thermal problems described by the hyperbolic heat conduction equation, Numerical heat transfer B - fundamentals, 44, 347-363, (2003)
[16] Li, J.; Zhang, Z.F.; Liu, D.Y., Experimental and theoretical study on the rapid transient nucleated boiling heat transfer, Progress in natural science, 11, 529-535, (2001)
[17] Li, J.; Cheng, P.; Peterson, G.P.; Xu, J.Z., Rapid transient heat conduction in multilayer materials with pulsed heating boundary, Numerical heat transfer A - applications, 47, 633-652, (2005)
[18] Lor, W.B.; Chu, H.S., Effect of interface thermal resistance on heat transfer in a composite medium using the thermal wave model, International journal of heat and mass transfer, 43, 653-663, (2000) · Zbl 1112.74372
[19] Lord, H.W.; Shulman, Y., A generalized dynamic theory of thermoelasticity, Mechanics and physics of solids, 15, 299-309, (1967) · Zbl 0156.22702
[20] Miller, S.T.; Haber, R.B., A spacetime discontinuous Galerkin method for hyperbolic heat conduction, Computer methods in applied mechanics and engineering, 198, 194-209, (2008) · Zbl 1194.80118
[21] Ozisik, M.N.; Tzou, D.Y., On the wave theory in heat conduction, ASME journal of heat transfer, 116, 526-535, (1994)
[22] Park, H.K.; Zhang, X.; Grigoropoulos, C.P.; Poon, C.C.; Tam, A.C., Transient temperature during the vaporization of liquid on a pulsed laser-heated solid surface, Heat transfer transactions ASME, 118, 702-708, (1996)
[23] Pulko, S.H.; Wilkinson, A.J.; Saidane, A., TLM representation of the hyperbolic heat conduction equations, International journal of numerical modelling, 15, 303-315, (2002) · Zbl 0996.65092
[24] Pulvirenti, B.; Barletta, A.; Zanchini, E., Finite-difference solution of hyperbolic heat conduction with temperature-dependent properties, Numerical heat transfer A - applications, 34, 169-183, (1998)
[25] Qiu, T.Q.; Tien, C.L., Femtosecond laser heating of multi-layer metal—I. analysis, International journal of heat and mass transfer, 39, 2789-2797, (1994)
[26] Qiu, T.Q.; Tienn, C.L., Femtosecond laser heating of multi-layer metal - I. analysis, International journal of heat and mass transfer, 39, 2789-2797, (1994)
[27] Shi, L.; Majumdar, A., Recent developments in microscale temperature measurement techniques, (), 12-23
[28] Stehfest, H., Communications of ACM, 13, 47, (1970)
[29] Tang, D.W.; Araki, N., On non-Fourier temperature wave and thermal relaxation time, International journal of thermophysics, 18, 493-504, (1997)
[30] Tzou, D.Y., Intensification of externally applied magnetic field around a crack in layered composite, Journal of theoretical and applied fracture mechanics, 4, 191-199, (1985)
[31] Tzou, D.Y., The generalized lagging response in small-scale and high-rate heating, International journal of heat and mass transfer, 38, 3231-3240, (1995)
[32] Tzou, D.Y., A unified field approach for heat conduction from macro- to micro-scales, ASME journal of heat transfer, 117, 8-16, (1995)
[33] Tzou, D.Y., Macro- to microscale heat transfer: the lagging behavior, (1997), Taylor & Francis Washington, DC
[34] Tzou, D.Y.; Ozisik, M.N.; Chiffelle, R.J., The lattice temperature in the microscopic two-step model, ASME journal of heat transfer, 116, 1034-1038, (1994)
[35] Vadavarz, A.; Kumar, S.; Moallemi, M.K., Significance on non-Fourier heat wave in microscale conduction, Asme dsc, 32, 109-121, (1991)
[36] Vernotte, P., LES paradoxes de la theorie continue de l’equation de la chaleu, Comptes rendus de l’ academie des sciences serie iia:sciences de la terre et des planets, 246, 3154-3155, (1958) · Zbl 1341.35086
[37] Weber, C., Analysis and solution of the ill-posed inverse heat conduction problem, International journal of heat and mass transfer, 24, 1783-1792, (1981) · Zbl 0468.76086
[38] Yang, H.Q., Characteristics-based, high-order accurate and nonoscillatory numerical method for hyperbolic heat conduction, Numerical heat transfer B - fundamentals, 18, 221-241, (1990) · Zbl 0711.76093
[39] Zamani, A.; Hetnarski, R.B.; Eslami, M.R., Second sound in a cracked layer based on lord – shulman theory, Journal of thermal stresses, 34, 181-200, (2011)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.