×

Numerical simulation of tunneling through arbitrary potential barriers applied on MIM and MIIM rectenna diodes. (English) Zbl 1396.81016

Summary: With the continuous miniaturization of electronic devices, quantum-mechanical effects such as tunneling become more effective in many device applications. In this paper, a numerical simulation tool is developed under a MATLAB environment to calculate the tunneling probability and current through an arbitrary potential barrier comparing three different numerical techniques: the finite difference method, transfer matrix method, and transmission line method. For benchmarking, the tool is applied to many case studies such as the rectangular single barrier, rectangular double barrier, and continuous bell-shaped potential barrier, each compared to analytical solutions and giving the dependence of the error on the number of mesh points. In addition, a thorough study of the \(J\)-\(V\) characteristics of MIM and MIIM diodes, used as rectifiers for rectenna solar cells, is presented and simulations are compared to experimental results showing satisfactory agreement. On the undergraduate level, the tool provides a deeper insight for students to compare numerical techniques used to solve various tunneling problems and helps students to choose a suitable technique for a certain application.

MSC:

81P15 Quantum measurement theory, state operations, state preparations
78A55 Technical applications of optics and electromagnetic theory
81U05 \(2\)-body potential quantum scattering theory
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
68U20 Simulation (MSC2010)

Software:

Matlab
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Wittmann, M. C.; Morgan, J. T.; Bao, L., Addressing student models of energy loss in quantum tunnelling, Eur. J. Phys., 26, 939-950, (2005)
[2] Razavy, M., Quantum Theory of Tunneling, (2003), Singapore: World Scientific, Singapore · Zbl 1140.81306
[3] Ankerhold, J., Quantum Tunneling in Complex Systems: The Semiclassical Approach, (2007), Berlin: Springer Tracts in Modern Physics, Berlin · Zbl 1133.81001
[4] Takagi, S., Macroscopic Quantum Tunneling, (2002), Cambridge: Cambridge University Press, Cambridge
[5] Arndt, M.; Juffmann, T.; Vedral, V., Quantum physics meets biology, HFSP J., 3, 386-400, (2009)
[6] Magoga, M.; Archambault, F.; Cerdá, J. I., NtSTM: A step forward in scanning tunneling microscopy (STM) simulations, Comput. Phys. Commun., 183, 1246-1249, (2012)
[7] Mendez, B.; Domínguez-Adame, F., Numerical study of electron tunneling through heterostructures, Am. J. Phys., 62, 143-147, (1994)
[8] Grover, S.; Moddel, G., Applicability of metal/insulator/metal (MIM) diodes to solar rectennas, IEEE J. Photovoltaics, 1, 78-83, (2011)
[9] Garg, A., Tunnel splittings for one-dimensional potential wells revisited, Am. J. Phys., 68, 430-437, (2000)
[10] Nguyen, H. S., Realization of a double-barrier resonant tunneling diode for cavity polaritons, Phys. Rev. Lett., 110, (2013)
[11] Seo, K.; Ihm, G.; Ahn, K-H; Lee, S., Spin filtering in an electromagnetic structure, J. Appl. Phys., 95, 7252-7254, (2004)
[12] Beiser, A., Concepts of Modern Physics, 542, (2003), New York: McGraw-Hill, New York
[13] Merzbacher, E., Quantum Mechanics, (1998), New York: Wiley, New York
[14] Dutt, A.; Kar, S., Smooth double barriers in quantum mechanics, Am. J. Phys., 78, 1352-1360, (2010)
[15] Van der Maelen, J. F.; Granda, S. G.; Velázquez, A. M., Solving one-dimensional Schrodinger-like equations using a numerical matrix method, Am. J. Phys., 64, 327-332, (1996)
[16] Boykin, T. B.; Klimeck, G., The discretized Schrodinger equation for the finite square well and its relationship to solid-state physics, Eur. J. Phys., 26, 865-881, (2005) · Zbl 1078.81017
[17] Tarek, M. A., A new approach for numerical simulation of quantum transport in double-gate SOI, Int. J. Numer. Model., 20, 299-309, (2007) · Zbl 1206.82085
[18] Tarek, M. A.; Hassan, H. H.; Fikry, W.; Omar, O. A., Solution of Schrodinger equation in double-gate MOSFETs using transfer matrix method, Electron. Lett., 40, 1307-1308, (2004)
[19] Pujol, O.; Carles, R.; Philippe, J., Quantum propagation and confinement in 1D systems using the transfer-matrix method, Eur. J. Phys., 35, (2014) · Zbl 1292.81131
[20] Ando, Y.; Itoh, T., Calculation of transmission tunneling current across arbitrary potential barriers, J. Appl. Phys., 61, 1497-1502, (1987)
[21] Anwar, A.; Jahan, M., Traversal time in an asymmetric double-barrier quantum-well structure, IEEE J. Quantum Electron., 31, 3-7, (1995)
[22] Khondker, A.; Khan, M. R.; Anwar, A., Traversal time in an asymmetric double-barrier quantum-well structure, J. Appl. Phys., 63, 5191-5193, (1988)
[23] Gadalla, M.; Abdel-Rahman, M.; Shamim, A., Design, optimization and fabrication of a 28.3 THz nano-rectenna for infrared detection and rectification, Sci. Rep., 4, 4270, (2014)
[24] Simmons, J. G., Potential barriers and emission-limited current flow between closely spaced parallel metal electrodes, J. Appl. Phys., 35, 2472-2481, (1964)
[25] He, Y.; Cao, Z.; Shen, Q., Analytical formula of the transmission probabilities across arbitrary potential barriers, J. Phys. A: Math. Gen., 38, 5771-5780, (2005) · Zbl 1073.81559
[26] Tarek, M. A., Modeling and 2D simulation of double-gate SOI devices, PhD Thesis, (2005)
[27] Gilfoyle, G., A new teaching approach to quantum mechanical tunneling, Comput. Phys. Commun., 121, 573-577, (1999)
[28] Kalotas, T.; Lee, A., A new approach to one-dimensional scattering, Am. J. Phys., 59, 48-52, (1991)
[29] Fedirko, V.; Polyakov, S.; Zenyuk, D., Matrix method for simulating the tunneling transfer, mathematical models and computer simulations, Math. Models Comput. Simul., 2, 704-713, (2010)
[30] Landau L. D, L. D.; Lifshitz, E. M., Quantum Mechanics: Non-Relativistic Theory, (1977), Oxford: Pergamon, Oxford
[31] Noureddine, I. N.; Sedghi, N.; Mitrovic, I. Z.; Hall, S., Barrier tuning of atomic layer deposited Ta_{2}O_{5} and Al_{2}O_{3} in double dielectric diodes, J. Vac. Sci. Technol. B, 35, (2017)
[32] Grover, S.; Moddel, G., Engineering the current-voltage characteristics of metal-insulator-metal diodes using double-insulator tunnel barriers, Solid State Electron, 67, 94-99, (2012)
[33] Lent, C. S.; Kirkner, D. J., The quantum transmitting boundary method, J. Appl. Phys., 67, 6353-6359, (1990)
[34] Simmons, J. G., Conduction in thin dielectric films, J. Phys. D: Appl. Phys., 4, 613, (1971)
[35] Weerakkody, A. D., Enhanced low voltage nonlinearity in resonant tunneling metal-insulator-insulator-metal nanostructures, J. Microelectron. Eng., 147, 298-301, (2015)
[36] Herner, S. B.; Weerakkody, A. D.; Belkadi, A.; Moddel, G., High performance MIIM diode based on cobalt oxide/titanium oxide, Appl. Phys. Lett., 110, (2017)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.