×

Development of an efficient 3-D CFD software to simulate and visualize the scavenging of a two-stroke engine. (English) Zbl 1185.76820

Summary: In this paper we want to describe in detail how the task of numerically solving the flow through a two-stroke engine with moving parts is solved in an efficient way. The mathematical model behind the scenes is illuminated and the used numerical schemes are specified. First, the computation of the convective flux function is carried out by the AUSMDV Riemann solver, which has been proven to be very efficient in comparison to other schemes. Then the introduction of the temperature dependency of the material properties of the fluid has augmented the realistic setting within the compression and expansion of the hot gas within the cylinder. This temperature dependency of the heat capacity causes a change in the equation of state. The gas is not polytropic any more but calorically imperfect. Thus, the use of a relaxation method is necessary in order to retain our Riemann solver. To account for the complex geometry, it was necessary to realize a special mesh treatment. The computational domain can be assembled by different meshes that are connected in a mass conservative way. Furthermore, the piston and crankshaft motion is obtained by very efficient algorithms. In order to speed up the computation of the numerical solution, different strategies have been followed. Adaptive local time-stepping has been implemented in a time consistent manner. Additionally, a dynamic local mesh adaption with hanging knots is used to reach a better resolution in critical areas. A further reduction in computational time has been obtained by the parallelization of the numerical scheme and the mesh routines. To handle this parallelization of the mesh treatment, an extended partitioning for the dynamic load balancing has been implemented. Finally, a simulation of flow through a real-world geometry of an existing two-stroke engine has been performed, the results have been validated with measured pressure data for this engine, and the flow has been qualitatively and quantitatively studied.

MSC:

76M12 Finite volume methods applied to problems in fluid mechanics
76D05 Navier-Stokes equations for incompressible viscous fluids
76M27 Visualization algorithms applied to problems in fluid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Leep LJ, Strumolo GS, Griaznov VL, Sengupta S, Brohmer AM, Meyer J (1994) CFD investigations of the scavenging process in a two-stroke engine. SAE Paper No 941929, Society of Automotive Engeneers, Warrendale, PA
[2] Mitianiec W (2002) Analysis of loop scavenging process in a small power SI two-stroke engine. SAE Paper No 2002-01-2181, Society of Automotive Engeneers, Warrendale, PA
[3] Raghunathan BD, Kenny RG (1997) CFD simulation and validation of the flow within a motored two-stroke engine. SAE Paper No 970359, Society of Automotive Engeneers, Warrendale, PA
[4] Rosskamp H, Klimmek A, Pretzsch P, Mugele M (2001) Scavenge Loss mechanisms and their driving forces in loop-scavenged high-performance two-stroke engines. SAE Paper No 2001-01-1826/4247, Society of Automotive Engeneers, Warrendale, PA
[5] Werner A (2000) 3D simulation of instationary turbulent flow and combustion in internal combustion engines. In: Krause E, Jäger W (eds) High performance computing in science and engineering. Springer, New York · Zbl 1041.76533
[6] Zeng Y, Strauss S, Lucier P, Craft T (2004) Predicting and optimizing two-stroke engine performance using multidimensional CFD. SAE Paper No 2004-32-0039, Society of Automotive Engeneers, Warrendale, PA
[7] Blair GP (1996) Design and simulation of two-stroke engines. Society of Automotive Engineers, Inc
[8] Ferziger J, Perić M (1997) Computational methods for fluid dynamics. Springer, Berlin · Zbl 0869.76003
[9] Truckenbrodt E (1989) Fluidmechanik, Band I. Grundlagen und elementare Strömungsvorgänge dichtebeständiger Fluidet. Springer, Berlin · Zbl 0424.76001
[10] Godlewski E, Raviart P-A (1996) Numerical approximation of hyperbolic systems of conservation laws. Springer, New York · Zbl 0860.65075
[11] Kröner D (1997) Numerical schemes for conservation laws. Wiley&Teubner, Stuttgart · Zbl 0872.76001
[12] Bardos C, Leroux AY, Nedelec JC (1979) First order quasilinear equations with boundary conditions. Commun Partial Differ Equ 4(9):1017–1034 · Zbl 0418.35024
[13] Otto F (1996) Initial-boundary value problem for a scalar conservation law. C R Acad Sci Paris Sér I 322(8):729–734 · Zbl 0852.35013
[14] Schlichting H, Gersten K (1997) Grenzschicht-theorie. Springer, Berlin · Zbl 0880.76002
[15] Klassen L, Klimmek A, Kröner D, Trescher D (2003) Numerical optimization of scavenging in two-stroke engines with transfer ducts, an exhaust port and a moving piston. In: Jäger W, Krebs H-J (eds) Mathematics, key technology for the future. Springer, New York · Zbl 1034.92036
[16] Verein Deutscher Ingenieure (1997) VDI–Wärmeatlas: Berechnungsblätter für den Wärmeübergang. Hrsg. VDI–Gesellschaft Verfahrenstechnik und Chemieingenieurwesen. Springer, Berlin
[17] Singer IM, Thorpe JA (1967) Lecture notes on elementary topology and geometry. Springer, New York · Zbl 0163.44302
[18] Liou M-S, Steffen CJ (1993) A new flux splitting scheme. J Comput Phys 107:23–39 · Zbl 0779.76056
[19] Wada Y, Liou M-S (1997) An accurate and robust flux splitting scheme for shock and contact discontinuities. SIAM J Sci Comput 18(3):633–657 · Zbl 0879.76064
[20] Egelja A, Kröner D, Schwörer R (1999) Adaptive grids for time dependent conservation laws: theory and applications in CFD. In: High performance scientific and engineering computing, Munich, 1998. Lect notes comput sci eng, vol 8. Springer, Berlin, pp 25–37
[21] Egelja A, Kröner D, Schwörer R, Lanson N, Mancip M, Vila JP (1998) Combined finite volume and smoothed particle method. In: Numerical flow simulation, I, Marseille, 1997. Notes numer fluid mech, vol 66. Vieweg, Braunschweig, pp 50–74
[22] Krause E, Meinke M (2000) CFD–applications on NEC SX-4. In: Krause E, Jäger W (eds) High performance computing in science and engineering. Springer, Berlin · Zbl 0989.76031
[23] Jenny P (1997) On the numerical solution of the compressible Navier–Stokes equations for reacting and non–reacting gas mixtures. Doctoral Dissertation, ETH Zürich
[24] Klassen L, Kröner D, Schott P (2003) Finite volume method on unstructed grids in 3D with applications to the simulation of gravity waves. Met Atm Phys 82(1–4):259–270
[25] Schott P (2001) Dreidimensionale Strömungssimulation in der Wettervorhersage. Diplomarbeit, Mathematisches Institut, Universität Freiburg
[26] Schwörer R (1997) Entwicklung und Parallelisierung von Finite Volumen Verfahren zur Lösung der kompressiblen Navier–Stokes Gleichungen in 2–D. Diplomarbeit, Mathematisches Institut, Freiburg
[27] Wierse M, Kröner D, Müller A, Schupp B, Schwörer R (1998) Simulation of a 3-D piston driven flow. In: Friedrich R et al. (eds) Computation and visualization of three-dimensional vortical and turbulent flows. Proc of the 5th CNRS-DFG workshop on numerical flow simulation, München, Germany, Dec 6–7, 1996. Notes numer fluid mech, vol 64. Vieweg, Wiesbaden, pp 333–349
[28] Wierse M, Kröner D (1996) Higher order upwind schemes on unstructured grids for the nonstationary compressible Navier–Stokes equations in complex time-dependent geometries in 3D. Preprint Nr 2, Universität Freiburg · Zbl 0884.76073
[29] Wierse M (1995) Higher order upwind schemes on unstructured grids for the compressible Euler equations in timedependent geometries in 3D. Doctoral Dissertation, Mathematisches Institut, Freiburg, SFB256 Preprint 393, Bonn · Zbl 0850.76367
[30] Demirdžić I, Perić M (1990) Finite volume method for prediction of fluid flow in arbitrarily shaped domains with moving boundaries. Int J Numer Methods Fluids 10:771–790 · Zbl 0697.76038
[31] Hirsch C (1992) Numerical computation of internal and external flows, vol II: computational methods for inviscid and viscous flows. Wiley, New York
[32] Poinsot TJ, Lele SK (1992) Boundary conditions for direct simulations of compressible viscous flows. J Comput Phys 101:104–129 · Zbl 0766.76084
[33] Geßner T (2001) Dynamic mesh adaption for supersonic combustion waves modeled with detailed reaction mechanisms. Doctoral Dissertation, Mathematisches Institut, Freiburg · Zbl 1009.76001
[34] Hirsch C (1992) Numerical computation of internal and external flows, vol I: fundamentals of numerical discretization. Wiley, New York
[35] LeVeque RJ (1990) Numerical methods for conservation laws. Birkhäuser, Basel · Zbl 0723.65067
[36] Geiben M, Kröner D, Rokyta M (1993) A Lax-Wendroff type theorem for cell centered, finite volume schemes in 2D. Preprint 278, SFB 256, Bonn
[37] Geßner T (1994) Zeitabhängige Adaption für Finite Volumen Verfahren höherer Ordnung am Beispiel der Euler–Gleichungen der Gasdynamik. Institut für Angewandte Mathematik, Diplomarbeit, Universität Bonn
[38] Mavriplis DJ, Jameson A (1989) Multigrid solution of the Navier–Stokes equations on triangular meshes. AIAA Paper 89-0120, AIAA 27th Aerospace Sciences Meeting, Reno
[39] Coquel F, Perthame B (1998) Relaxation of energy and approximate Riemann solvers for general pressure laws in fluid dynamics. SIAM J Numer Anal 35(6):2223–2249 · Zbl 0960.76051
[40] Dedner A (2003) Solving the system of radiation magnetohydrodynamics for solar physical simulations in 3d. Doctoral Dissertation, Mathematisches Institut, Freiburg · Zbl 1066.76002
[41] Fujii K (1995) Unified zonal method based on the fortified solution algorithm. J Comput Phys 118:92–108 · Zbl 0830.76069
[42] Steger JL, Benek JA (1987) On the use of composite grid schemes in computational aerodynamics. Comput Methods Appl Mech Eng 64:301–320 · Zbl 0607.76061
[43] Peterson NA (1999) Hole-cutting for three-dimensional overlapping grids. SIAM J Sci Comput 21(2):646–665 · Zbl 0947.65128
[44] Chesshire G, Henshaw WD (1994) A scheme for conservative interpolation on overlapping grids. SIAM J Sci Comput 15(4):819–845 · Zbl 0805.65086
[45] Hirt CW (1974) An arbitrary Lagrangian–Eulerian computing method for all flow speeds. J Comput Phys 14:227–253 · Zbl 0292.76018
[46] Probert J, Hassan O, Peraire J, Morgan K (1988) Transient adaptive methods for moving boundary problems. In: Gruber (ed) Proceeding of the 5th international symposium on numerical methods in engineering · Zbl 0804.76053
[47] Amsden AA, O’Rourke PJ, Butler TD (1992) Comparisons of computed and measured three-dimensional velocity fields in a motored two-stroke engine. SAE Paper No 920418, Society of Automotive Engeneers, Warrendale, PA
[48] Fumeaux C, Baumann D, Leuchtmann P, Vahldieck R (2004) A generalized local time-step scheme for efficient FVTD simulations in strongly inhomogeneous meshes. IEEE Trans Microw Theory Technol 52(3):1067–1076 · Zbl 1053.78011
[49] Olson KM, MacNeice P, Fryxell B, Ricker P, Timmes FX, Zingale M (2000) PARAMESH: a parallel, adaptive mesh refinement toolkit and performance of the ASCI/FLASH code. In: Proceeding of the AAS 195th meeting
[50] Hwang CJ, Wu SJ (1992) Global and local remeshing algorithms for compressible flows. J Comput Phys 102:98–113 · Zbl 0770.76037
[51] Vilsmeier R, Hänel D (1993) Adaptive methods on unstructured grids for Euler and Navier–Stokes equations. Comput Fluids 22(45):485–499 · Zbl 0779.76078
[52] Bänsch E (1989) Local mesh refinement in 2 and 3 dimensions. Report 6, SFB 256, Bonn
[53] Bänsch E (1991) An adaptive finite-element strategy for the three-dimensional time-dependent Navier–Stokes equations. J Comput Appl Math 36:3–28 · Zbl 0727.76078
[54] Grape-Team. (1999) GRAPE GRAphics programming environment manual. Available from WWW: www.mathematik.uni-freiburg.de/IAM/Research/grape/DOC/HTML/manual.html
[55] Neubauer R, Ohlberger M, Rumpf M, Schwörer R (1997) Efficient visualization of large-scale data on hierarchical meshes. In: Visualization in scientific computing ’97. Springer, New York, pp 125–137
[56] Ohlberger M, Rumpf M (1997) Hierarchical and adaptive visualization on nested grids. Computing 59(4):365–385 · Zbl 0944.65022
[57] Wierse M, Rumpf M (1992) GRAPE, Eine interaktive Umgebung für Visualisierung und Numerik. In: Informatik, Forschung und Entwicklung, vol 7, pp 145–151
[58] Kallinderis Y (1996) Grid adaptation by redistribution and local embedding. In: Computational fluid dynamics. von Karman Institute for Fluid Dynamics, Lecture Series 1996-06
[59] Kröner D, Ohlberger M (2000) A posteriori error estimates for upwind finite volume schemes for nonlinear conservation laws in multi dimensions. Math Comput 69:25–39 · Zbl 0934.65102
[60] Ohlberger M (2001) A posteriori error estimate for finite volume approximations to singularly perturbed nonlinear convection–diffusion equations. Numer Math 87(4):737–761 · Zbl 0973.65076
[61] Ohlberger M, Vovelle J (2003) Error estimate for the approximation of non-linear conservation laws on bounded domains by the finite volume method. Preprint 03-32, Mathematisches Institut, Freiburg · Zbl 1082.65112
[62] Nessyahu H, Tassa T, Tadmor E (1994) The convergence rate of Godunov type schemes. SIAM J Numer Anal 32(1):1–16 · Zbl 0799.65096
[63] Muzaferija S (1994) Adaptive finite volume method for flow prediction using unstructured meshes and multigrid approach. Doctoral Dissertation, Department of Mechanical Engineering, University of London
[64] Champier S (1998) Error estimates for the approximate solution of a nonlinear hyperbolic equation with source term given by the finite volume scheme. Preprint, CNRS UMR 5585, Université de Saint–Etienne, available from WWW: numerix.univ-lyon1.fr/publis/publiv/1997/publis.html · Zbl 1015.65043
[65] Klöfkorn R, Kröner D, Ohlberger M (2002) Local adaptive methods for convection dominated problems. Int J Numer Methods Fluids 40(1–2):79–91 · Zbl 1058.76576
[66] Geßner T, Kröner D (2001) Dynamic mesh adaption for supersonic reactive flow. In: Proceedings: hyperbolic problems: theory, numerics, applications, eighth international conference, Magdeburg, 2000, pp 415–424
[67] Geßner T, Kröner D (2001) Godunov type methods on unstructured grids and local mesh refinement. In: Toro EF (ed) Godunov methods theory and applications, New York, pp 527–548 · Zbl 1064.76569
[68] van der Velde E (1994) Concurrent scientific computing. Springer, New York · Zbl 0797.65001
[69] Schiano P, Matrone A (1995) Parallel CFD applications: experiences on scalable distributed multicomputers. In: Satofuka N, Periaux J, Ecer A (eds) Parallel computational fluid dynamics, new trends and advances. North-Holland, Amsterdam · Zbl 0867.76075
[70] Schupp B (1999) Entwicklung eines effizienten Verfahrens zur Simulation kompressibler Strömungen in 3D auf Parallelrechnern. Doctoral Dissertation, Mathematisches Institut, Freiburg
[71] Tanenbaum AS, Goodman J (1999) Computerarchitektur. Prentice-Hall, München
[72] Dedner A, Rohde C, Schupp B, Wesenberg M (2004) A parallel, load balanced MHD code on locally adapted, unstructured grids in 3D. Comput Vis Sci 7(2):79–96 · Zbl 1120.76338
[73] MPI-Team (1997) MPI: a message-passing interface standard (1994), and MPI-2: extensions to the message-passing interface. Available from WWW: www.mpi-forum.org/docs/docs.html
[74] OpenMP-Team (2002) Official OpenMP specifications, C/C++ version 2.0. Available from WWW: www.openmp.org/drupal/mp-documents/cspec20.pdf
[75] Kallinderis Y (1996) Domain partitioning and load balancing for parallel computation. In: Computational fluid dynamics. von Karman Institute for Fluid Dynamics, Lecture Series 1996-06
[76] Trescher D (2005) Development of an efficient 3-D CFD software to simulate and visualize the scavenging of a two-stroke engine. Doctoral Dissertation, Mathematisches Institut, Freiburg · Zbl 1119.76003
[77] ICEM CFD HEXA, ICEM CFD Engineering (2004)
[78] Trescher D (2000) Theorie und Numerik Transparenter Randbedingungen. Diplomarbeit, Mathematisches Institut, Universität Freiburg
[79] Becker J, Preuser T, Rumpf M (2000) PDE methods in flow simulation post processing. Comput Vis Sci 3(3):159–167 · Zbl 1060.76635
[80] Ohlberger M, Rumpf M (1999) Adaptive projection operators in multiresolution scientific visualization. IEEE Trans Vis Comput Graph 5(1):74–94 · Zbl 05108161
[81] Rumpf M, Schupp B (1995) Visualization of parallel data based on procedural access. In: Proc MathVis Conference, Berlin
[82] Jante A (1968) Scavenging and other problems of two-stroke spark-ignition engines. SAE Paper No. 680468, Society of Automotive Engeneers, Warrendale, PA
[83] Klassen L, Kröner D (2000) Discretization of higher order for conservation laws on nonconformal unstructured rectangular grids. Manuscript
[84] Herbin R, Kröner D (2002) Finite volumes for complex applications III. Hermes Penton Science, London · Zbl 1049.65002
[85] Klöker J (1992) Numerische Simulation einer dreidimensionalen, kompressiblen, reibungsbehafteten Strömung im Zylinder eines Modellmotors. Doctoral Dissertation, RWTH Aachen
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.