×

The breakdown voltage characteristics and the secondary electron production in direct current hydrogen discharges for the gaps ranging from \(1 \mu m\) to \(100 \mu \)m. (English) Zbl 1255.76159

Summary: This Letter reports on experimental studies of the direct current breakdown voltage curves in hydrogen discharges with parallel-plane electrodes separated from \(1 \mu m\) to \(100 \mu m\). Based on the breakdown voltage curves, the role of the enhancement of the secondary electron emission due to high electric field in microgaps has been estimated. The secondary electron emission due to high electric field generated in microgaps depends primarily on the electric field \(E\) rather than reduced electric field \(E/N\), leading directly to the violation of the Paschen’s law.

MSC:

76X05 Ionized gas flow in electromagnetic fields; plasmic flow
81V45 Atomic physics
78A55 Technical applications of optics and electromagnetic theory
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Ohno, T.; Ohki, A.; Matsuoka, T., Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 16, 2539 (1998)
[2] Baklanov, M. R.; Shamiryan, D. G.; Tökei, Zs.; Beyer, G. P.; Conard, T.; Vanhaelemeersch, S.; Maex, K., Journal of Vacuum Science & Technology B, 19, 1201 (2001)
[3] Bruno, G.; Losurdo, M.; Capezzuto, P.; Capozzi, V.; Trovato, T.; Perna, G.; Lorusso, G. F., Applied Phys. Letters, 69, 685 (1996)
[4] Shon, C.; Makabe, T., IEEE Transactions on Plasma Science, 32, 390 (2004)
[5] Radjenović, B.; Radmilović-Radjenović, M., Central European Journal of Physics, 9, 265 (2011) · Zbl 1245.78013
[6] Toth, A.; Mohai, M.; Ujvari, T.; Bertoti, I., Surface Interface Anal., 38, 898 (2006)
[7] Xie, L.; Jiao, L.; Dai, H., J. Am. Chem. Soc., 132, 14751 (2010)
[8] Ito, T.; Izaki, T.; Terashima, K., Thin Solid Films, 386, 300 (2001)
[9] Torres, J. M.; Dhariwal, R. S., Nanotechnology, 10, 102 (1999)
[10] Radmilovićc-Radjenović, M.; Radjenović, B., Plasma Sources Sci. Technol., 17, 024005 (2008)
[11] Jugroot, M., Plasma Processes and Polymers, 6, 360 (2009)
[12] Aktas, K.; Acar, S.; Salamov, B. G., Plasma Sources Sci. Technol., 20, 045010 (2011)
[13] Chen, C. H.; Yeh, J. A.; Wang, P. J., J. Micromech. Microeng., 16, 1366 (2006)
[14] Radmilović-Radjenović, M.; Radjenović, B., Europhysics Letters, 83, 25001 (2008)
[15] Tirumala, R.; Go, D. B., Applied Phys. Letters, 97, 151502 (2010)
[16] Boyle, W. S.; Kisliuk, P., Phys. Review, 97, 255 (1955)
[17] Klas, M.; Matejčik, Š.; Radjenović, B.; Radmilović-Radjenović, M., Europhysics Letters, 95, 35002 (2011)
[18] Mokrov, M. S.; Raizer, Y. P., Technical Physics, 78, 47 (2008)
[19] Meek, J. M.; Craggs, J. D., Electrical Breakdown of Gases (1953), Oxford University Press: Oxford University Press Oxford, UK · Zbl 0052.45308
[20] Guillot, Ph.; Belenguer, Ph.; Therese, L.; Lavione, V.; Chollet, H., Surface Interface Anal., 35, 590 (2003)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.