×

Geometric, variational discretization of continuum theories. (English) Zbl 1366.37148

Summary: This study derives geometric, variational discretization of continuum theories arising in fluid dynamics, magnetohydrodynamics (MHD), and the dynamics of complex fluids. A central role in these discretizations is played by the geometric formulation of fluid dynamics, which views solutions to the governing equations for perfect fluid flow as geodesics on the group of volume-preserving diffeomorphisms of the fluid domain. Inspired by this framework, we construct a finite-dimensional approximation to the diffeomorphism group and its Lie algebra, thereby permitting a variational temporal discretization of geodesics on the spatially discretized diffeomorphism group. The extension to MHD and complex fluid flow is then made through an appeal to the theory of Euler-Poincaré systems with advection, which provides a generalization of the variational formulation of ideal fluid flow to fluids with one or more advected parameters. Upon deriving a family of structured integrators for these systems, we test their performance via a numerical implementation of the update schemes on a cartesian grid. Among the hallmarks of these new numerical methods are exact preservation of momenta arising from symmetries, automatic satisfaction of solenoidal constraints on vector fields, good long-term energy behavior, robustness with respect to the spatial and temporal resolution of the discretization, and applicability to irregular meshes.

MSC:

37N10 Dynamical systems in fluid mechanics, oceanography and meteorology
37M99 Approximation methods and numerical treatment of dynamical systems
65K10 Numerical optimization and variational techniques
76A02 Foundations of fluid mechanics
76W05 Magnetohydrodynamics and electrohydrodynamics
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Hairer, E.; Lubich, C.; Wanner, G., Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations (2006), Springer: Springer Berlin · Zbl 1094.65125
[2] Marsden, J. E.; West, M., Discrete mechanics and variational integrators, Acta Numer., 10, 357-514 (2001) · Zbl 1123.37327
[3] Brackbill, J. U.; Barnes, D. C., The effect of nonzero product of magnetic gradient and \(B\) on the numerical solution of the magnetohydrodynamic equations, J. Comput. Phys., 35, 426-430 (1980) · Zbl 0429.76079
[4] Zachary, A. L.; Malagoli, A.; Colella, P., A higher-order Godunov method for multidimensional ideal magnetohydrodynamics, SIAM J. Sci. Comput., 15, 2, 263-284 (1994) · Zbl 0797.76063
[5] Liu, J. G.; Wang, W. C., An energy-preserving MAC-Yee scheme for the incompressible MHD equation, J. Comput. Phys., 174, 12-37 (2001) · Zbl 0999.76096
[6] Clarke, D. A.; Norman, M. L.; Burns, J. O., Numerical simulations of a magnetically confined jet, Astrophys. J., 311, L63-L67 (1986) · Zbl 0826.53068
[7] K.G. Powell, An approximate Riemann solver for magnetohydrodynamics (that works in more than one dimension), ICASE Report No. 94-24, 1994.; K.G. Powell, An approximate Riemann solver for magnetohydrodynamics (that works in more than one dimension), ICASE Report No. 94-24, 1994.
[8] Lew, A.; Marsden, J. E.; Ortiz, M.; West, M., An overview of variational integrators, (Finite Element Methods: 1970’s and Beyond (2004)), 98-115
[9] Hydon, P. E., Multisymplectic conservation laws for differential and differential-difference equations, Proc. R. Soc. London, Ser. A, 461, 1627-1637 (2005) · Zbl 1139.37305
[10] Marsden, J. E.; Patrick, G. W.; Shkoller, S., Multisymplectic geometry, variational integrators, and nonlinear PDEs, Comm. Math. Phys., 199, 351-355 (1998) · Zbl 0951.70002
[11] Hiptmair, R., Finite elements in computational electromagnetism, Acta Numer., 11, 237-339 (2002) · Zbl 1123.78320
[12] Bochev, P. B.; Hyman, J. M., Principles of mimetic discretizations of differential operators, IMA, 142, 89-119 (2006) · Zbl 1110.65103
[13] Arnold, D. N.; Falk, R. S.; Winther, R., Finite element exterior calculus, homological techniques, and applications, Acta Numer., 15, 1-155 (2006) · Zbl 1185.65204
[14] Desbrun, M.; Grinspun, E.; Schröder, P.; Wardetzky, M., (Discrete Differential Geometry: An Applied Introduction. Discrete Differential Geometry: An Applied Introduction, SIGGRAPH Asia 2008 Course Notes (2008)), 46-62, (Chapter 7)
[15] Goedbloed, J. P.; Poedts, S., Principles of Magnetohydrodynamics (2004), Cambridge University Press: Cambridge University Press Cambridge
[16] Perot, B., Conservation properties of unstructured staggered mesh schemes, J. Comput. Phys., 159, 58-89 (2000) · Zbl 0972.76068
[17] Zhang, X.; Schmidt, D. B.; Perot, B., Accuracy and conservation properties of a 3D unstructured staggered mesh scheme for fluid dynamics, J. Comput. Phys., 175, 764-791 (2002) · Zbl 1018.76036
[18] Mullen, P.; Crane, K.; Pavlov, D.; Tong, Y.; Desbrun, M., Energy-preserving integrators for fluid animation, ACM Trans. Graph., 28, 3 (2009)
[19] Elcott, S.; Tong, Y.; Kanso, E.; Schröder, P.; Desbrun, M., Stable, circulation-preserving, simplicial fluids, ACM Trans. Graph., 26, 1-18 (2007)
[20] Cotter, C. J.; Holm, D. D.; Hydon, P. E., Multisymplectic formulation of fluid dynamics using the inverse map, Proc. R. Soc. Lond. Ser. A, 463, 2671-2687 (2007) · Zbl 1129.37036
[21] Pavlov, D.; Mullen, P.; Tong, Y.; Kanso, E.; Marsden, J. E.; Desbrun, M., Structure-preserving discretization of incompressible fluids, Physica D, 240, 6, 443-458 (2011) · Zbl 1208.37047
[22] Stern, A.; Tong, Y.; Desbrun, M.; Marsden, J. E., Variational integrators for Maxwell’s equations with sources, PIERS Online, 4, 711-715 (2008)
[23] Yee, K. S., Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media, IEEE Trans. Antennas Propag., 14, 3, 302-307 (1966) · Zbl 1155.78304
[24] Bossavit, A.; Kettunen, L., Yee-like schemes on a tetrahedral mesh with diagonal lumping, Int. J. Numer. Anal. Model., 12, 1-2, 129-142 (1999) · Zbl 0936.78011
[25] Moser, J.; Veselov, A. P., Discrete versions of some classical integrable systems and factorization of matrix polynomials, Int. J. Numer. Anal. Model., 139, 217-243 (1999) · Zbl 0754.58017
[26] Bobenko, A. I.; Suris, Y. B., Discrete time Lagrangian mechanics on Lie groups, with an application to the Lagrangec top, Comm. Math. Phys., 204, 147-188 (1999) · Zbl 0945.70010
[27] Bou-Rabee, N.; Marsden, J. E., Hamilton-Pontryagin integrators on Lie groups part I: introduction and structure-preserving properties, Found. Comput. Math., 9, 197-219 (2009) · Zbl 1221.37166
[28] Arnold, V. I., Sur la géometrie differentielle des groupes de Lie de dimension infinie et ses applications à l’hydrodynamique des fluides parfaits, Ann. Inst. Fourier, 16, 319-361 (1966) · Zbl 0148.45301
[29] J.E. Marsden, D.G. Ebin, A.E. Fischer, Diffeomorphism groups, hydrodynamics, and relativity, in: J. Vanstone (Ed.), Proceedings of the 13th Biennial Seminar of Canadian Mathematical Congress, 1972, pp. 135-279.; J.E. Marsden, D.G. Ebin, A.E. Fischer, Diffeomorphism groups, hydrodynamics, and relativity, in: J. Vanstone (Ed.), Proceedings of the 13th Biennial Seminar of Canadian Mathematical Congress, 1972, pp. 135-279. · Zbl 0284.58002
[30] Koopman, B. O., Hamiltonian systems and transformation in Hilbert space, Proc. Natl. Acad. Sci., 17, 315-318 (1931) · Zbl 0002.05701
[31] Arnold, V. I.; Khesin, B. A., Topological Methods in Hydrodynamics (1998), Springer: Springer New York · Zbl 0902.76001
[32] Holm, D. D.; Marsden, J. E.; Ratiu, T. S., The Euler-Poincaré equations and semidirect products with applications to continuum theories, Adv. Math., 137, 1-81 (1998) · Zbl 0951.37020
[33] Bloch, A. M., Nonholonomic Mechanics and Control (2003), Springer-Verlag: Springer-Verlag New York · Zbl 1045.70001
[34] N. Bou-Rabee, Hamilton-Pontryagin integrators on Lie groups, Ph.D. Thesis, California Institute of Technology, Pasadena, CA, 2007.; N. Bou-Rabee, Hamilton-Pontryagin integrators on Lie groups, Ph.D. Thesis, California Institute of Technology, Pasadena, CA, 2007. · Zbl 1221.37166
[35] Marsden, J. E.; Ratiu, T. S.; Weinstein, A., Semidirect products and reduction in mechanics, Trans. Amer. Math. Soc., 281, 147-177 (1984) · Zbl 0529.58011
[36] Holm, D., The Euler-Poincaré framework for modeling fluid dynamics, (Geometric Mechanics and Symmetry: The Peyresq Lectures. Geometric Mechanics and Symmetry: The Peyresq Lectures, London Mathematical Society Lecture Note Series (2005), Cambridge University Press), 157-209, (Chapter III) · Zbl 1163.37025
[37] Gay-Balmaz, F.; Ratiu, T. S., The geometric structure of complex fluids, Adv. in Appl. Math., 42, 176-275 (2009) · Zbl 1161.37052
[38] Gay-Balmaz, F.; Tronci, C., Reduction theory for symmetry breaking with applications to nematic systems, Physica D, 239, 1929-1947 (2010) · Zbl 1208.37038
[39] M. Desbrun, A.N. Hirani, M. Leok, J.E. Marsden, Discrete exterior calculus, Preprint, 2005, pp. 1-53.; M. Desbrun, A.N. Hirani, M. Leok, J.E. Marsden, Discrete exterior calculus, Preprint, 2005, pp. 1-53.
[40] Kobilarov, M.; Crane, K.; Desbrun, M., Lie group integrators for animation and control of vehicles, ACM Trans. Graph., 28, 1-11 (2009)
[41] Yee, H. C.; Sandham, N. D.; Djomehri, M. J., Low-dissipative high-order shock-capturing methods using characteristic-based filters, J. Comput. Phys., 150, 199-238 (1999) · Zbl 0936.76060
[42] Gardiner, T. A.; Stone, J. M., An unsplit Godunov method for ideal MHD via constrained transport, J. Comput. Phys., 205, 509-539 (2005) · Zbl 1087.76536
[43] Balsara, D. S.; Spicer, D. S., A staggered mesh algorithm using high order Godunov fluxes to ensure solenodial magnetic fields in magnetohydrodynamic simulations, J. Comput. Phys., 149, 270-292 (1999) · Zbl 0936.76051
[44] Cordoba, D.; Marliani, C., Evolution of current sheets and regularity of ideal incompressible magnetic fluids in 2D, Comm. Pure Appl. Math., 53, 512-524 (2000) · Zbl 1038.76060
[45] Mullen, P.; McKenzie, A.; Pavlov, D.; Durant, L.; Tong, Y.; Kanso, E.; Marsden, J. E.; Desbrun, M., Discrete Lie advection of differential forms, Found. Comput. Math., 11, 2, 131-149 (2011) · Zbl 1222.35010
[46] LeVeque, R. J., Finite Volume Methods for Hyperbolic Problems (2002), Cambridge University Press · Zbl 1010.65040
[47] Abraham, R.; Marsden, J. E.; Ratiu, T. S., Manifolds, Tensor Analysis, and Applications (1988), Springer: Springer New York · Zbl 0875.58002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.