×

The finite-volume time-domain algorithm using least square method in solving Maxwell’s equations. (English) Zbl 1128.78015

A finite-volume time-domain algorithm using the least-square method with a well-posed perfectly matched layer is developed in this paper to model electromagnetic scattering by 2D arbitrarily curved objects. Considering computational efficiency and geometric flexibility, the unstructured grids are emplyed in this algorithm. The Runge-Kutta explicit scheme is employed to solve the semidiscrete Maxwell’s equations. Several numerical examples confirm the capability and accuracy of the algorithm.

MSC:

78M25 Numerical methods in optics (MSC2010)
78A25 Electromagnetic theory (general)
65L06 Multistep, Runge-Kutta and extrapolation methods for ordinary differential equations
83C22 Einstein-Maxwell equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Harrington, R. F., Time-Harmonic Electromagnetic Fields (1961), McGrwa-Hill: McGrwa-Hill New York
[2] Kong, J. A., Electromagnetic Wave Theory (1986), John Wiley: John Wiley New York
[3] Harrington, R. F., Field Computation by Moment Methods (1968), MacMillan: MacMillan New York
[4] Jin, J. M., The Finite Element Method in Electromagnetics (1993), John Wiley: John Wiley New York · Zbl 0823.65124
[5] Yee, K. S., Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media, IEEE Trans. Antennas Propagat., 14, 302-307 (1966) · Zbl 1155.78304
[6] Taflove, A., Computational Electrodynamics - The finite Difference Time-Domain Method (1995), Artech House: Artech House Boston · Zbl 0840.65126
[7] Kunz, K. S.; Luebbers, R. J., The Finite Difference Time Domain Method for Electroagnetics (1993), CRC Press: CRC Press Boca Raton, FL
[8] V. Shankar, W.F. Hall, A.H. Mohammadian, A CFD-based finite-volume procedure for computational electromagnetics interdisciplinary applications of CFD methods AAIA-89-1987-CP, 1989.; V. Shankar, W.F. Hall, A.H. Mohammadian, A CFD-based finite-volume procedure for computational electromagnetics interdisciplinary applications of CFD methods AAIA-89-1987-CP, 1989.
[9] Leer, B. V., Towards the ultimate conservative difference scheme V. A second order sequel to Godunov’s method, J. Comput. Phys., 32, 101-136 (1979) · Zbl 1364.65223
[10] Hu, C.; Shu, C. W., Weight essentially non-oscillatory schemes on triangular meshs, J. Comput. Phys., 150, 97-127 (1999)
[11] Abgrall, R., On essentially ono-oscillatory schemes on unstructured meshs: analysis and implementation, J. Comput. Phys., 114, 45-58 (1994) · Zbl 0822.65062
[12] Z. Wang, Z.J. Wang, The lever set method on adaptive cartesian grid for interface capturing, AAIA-2004-0082, 2004.; Z. Wang, Z.J. Wang, The lever set method on adaptive cartesian grid for interface capturing, AAIA-2004-0082, 2004.
[13] Shang, J. S., Characteristic-based algorithm for solving the Maxwell’s equations in the time domain, IEEE Antennas Propagat. Mag., 37, 3, 15-25 (1995)
[14] Yee, K. S.; Chen, J. S., The finite-difference time-domain (FDTD) and the finite-volume time-domain (FVTD) methods in solving Maxwell’s equations, IEEE Trans. Antennas Propagat., 45, 3, 354-363 (1997)
[15] Mohammadian, A. H.; Shankar, V.; Hall, W. F., Computations of electromagnetic scattering and radiation using a time-domain finite-volume discretization procedure, Comput. Phys. Commun., 68, 175-196 (1991)
[16] J.S. Shang, R.M. Fithen, A comparative study of numerical algorithms for computational electromagnetics, AAIA-94-2410, 1994.; J.S. Shang, R.M. Fithen, A comparative study of numerical algorithms for computational electromagnetics, AAIA-94-2410, 1994.
[17] D. Baumann, C. Fumeaux, P. Leuchtmann, R. Vahldieck, Finite volume time-domain (FVTD) method and its application to the analysis of hemispherical dielectric-resonator antennas, in: IEEE MTT-S Int. Microwave Symp. Dig., 2003, pp. 985-988.; D. Baumann, C. Fumeaux, P. Leuchtmann, R. Vahldieck, Finite volume time-domain (FVTD) method and its application to the analysis of hemispherical dielectric-resonator antennas, in: IEEE MTT-S Int. Microwave Symp. Dig., 2003, pp. 985-988.
[18] C. Fumeaux, D. Baumann, P. Leuchtmann, R. Vahldieck, A generalized local time-step for the FVTD method for efficient simulation of microwave antennas, in: 33rd Eur. Microwave Conf. Dig., 2003, pp. 467-470.; C. Fumeaux, D. Baumann, P. Leuchtmann, R. Vahldieck, A generalized local time-step for the FVTD method for efficient simulation of microwave antennas, in: 33rd Eur. Microwave Conf. Dig., 2003, pp. 467-470.
[19] Fumeaux, C.; Baumann, D.; Leuchtmann, P.; Vahldieck, R., A generalized local time-step scheme for efficient FVTD simulations in strongly inhomogeneous meshes, IEEE Trans. Microwave Theory Tech., 52, 1067-1076 (2003)
[20] Baumann, D.; Fumeaux, C.; Leuchtmann, P.; Vahldieck, R., Finite-volume time-domain (FVTD) modelling of a broadband double-ridged horn antenna, Int. J. Numer. Model: Electron. Networks Dev. Fields, 17, 285-298 (2004) · Zbl 1053.78011
[21] Y. Liu, A 3D high-order unstructured finite-volume algorithm for solving Maxwell’s equations, in: 1995 Digest, USNC/NRSI Radio Science Meeting, 1995.; Y. Liu, A 3D high-order unstructured finite-volume algorithm for solving Maxwell’s equations, in: 1995 Digest, USNC/NRSI Radio Science Meeting, 1995.
[22] Y. Liu, A generalized finite volume algorithm for solving the Maxwell’s equations on arbitrary grids, in: Proceedings of 10th Annual Review of Progress in Applied Computational Electromagnetics, 1994.; Y. Liu, A generalized finite volume algorithm for solving the Maxwell’s equations on arbitrary grids, in: Proceedings of 10th Annual Review of Progress in Applied Computational Electromagnetics, 1994.
[23] W.F. Hall, V. Shankar, S. Palaniswany, Algorithmic aspects of wave propagation through stretched unstructured cells for problems in computational electromagnetics, AAIA-97-2089, 1997.; W.F. Hall, V. Shankar, S. Palaniswany, Algorithmic aspects of wave propagation through stretched unstructured cells for problems in computational electromagnetics, AAIA-97-2089, 1997.
[24] Wang, Z. J.; Przekwas, A. J.; Liu, Y., A FV-TD electromagnetic solver using adaptive cartesian grids, Comput. Phys. Commun., 148, 17-29 (2002)
[25] Hesthaven, J. S.; Warburton, T., High-order nodal methods on unstructured grids. I. Time-domain solution of Maxwell’s equations, J. Comput. Phys., 181, 186-221 (2002) · Zbl 1014.78016
[26] S. Abarbanel, D. Gottlieb, On the construction and analysis of absorbing layers in CEM, in: Proceedings of the 13th Annual Review of Progress in Applied Computational Electromagnetics, 1997, pp. 876-883.; S. Abarbanel, D. Gottlieb, On the construction and analysis of absorbing layers in CEM, in: Proceedings of the 13th Annual Review of Progress in Applied Computational Electromagnetics, 1997, pp. 876-883. · Zbl 0924.35160
[27] Abarbanel, S.; Gottlieb, D., A mathematical analysis of the PML method, J. Comput. Phys., 134, 357-363 (1997) · Zbl 0887.65122
[28] Fan, G. X.; Liu, Q. H., A strongly well-posed PML in lossy media, IEEE Antennas Wireless Propagat. Lett., 2, 97-100 (2003)
[29] M.H. Carpenter, C.A. Kennedy, Fourth order 2N-stroage Runge-Kutta scheme, NASA-TM-109112, 1994.; M.H. Carpenter, C.A. Kennedy, Fourth order 2N-stroage Runge-Kutta scheme, NASA-TM-109112, 1994.
[30] Lynch, D. R.; Paulsen, K. D., Origin of vector parasites in numerical maxwell solutions, IEEE Trans. Microwave Theory Tech., 39, 383-394 (1991)
[31] Piperno, S., \(L^2\)-stability of the upwind first order finite volume scheme for the Maxwell equations in two and three dimensions on arbitrary unstructured meshes, Math. Model. Numer. Anal., 34, 139-158 (2000) · Zbl 0949.65104
[32] Hesthaven, J. S.; Dinesen, P. G.; Lynov, J. P., spectral collocation time-domain modeling of diffractive optical elements, J. Comput. Phys., 155, 287-306 (1999) · Zbl 0956.78020
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.