×

Complexity reduction of electromagnetic systems. (English) Zbl 1471.35282

Benner, Peter (ed.) et al., Model order reduction. Volume 3: Applications. Berlin: De Gruyter. 145-199 (2021).
Summary: This chapter has two main objectives: first, to propose a computer-aided consistent and accurate description of the behavior of electromagnetic devices at various speeds or frequencies and, second, to describe procedures to generate compact electrical circuits for them, with an approximatively equivalent behavior. The extracted models should have a finite complexity as low as possible, while yielding an acceptable accuracy, as well as preserve essential characteristics, such as passivity. A successful complexity reduction can be obtained if a prioriand on-the-fly reduction strategies are applied before and during the model discretization, followed by a posteriori complexity reduction.
For the entire collection see [Zbl 1455.93002].

MSC:

35Q93 PDEs in connection with control and optimization
35-02 Research exposition (monographs, survey articles) pertaining to partial differential equations
93A15 Large-scale systems
93C05 Linear systems in control theory
49M41 PDE constrained optimization (numerical aspects)
49M37 Numerical methods based on nonlinear programming
80A25 Combustion
76V05 Reaction effects in flows
35B30 Dependence of solutions to PDEs on initial and/or boundary data and/or on parameters of PDEs
37M99 Approximation methods and numerical treatment of dynamical systems
41A05 Interpolation in approximation theory
65K10 Numerical optimization and variational techniques
65F20 Numerical solutions to overdetermined systems, pseudoinverses

Software:

p1afem
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] M. Ahmadloo and A. Dounavis, Parameterized model order reduction of electromagnetic systems using multiorder Arnoldi, IEEE Trans. Adv. Packaging, 33 (4) (2010), 1012-1020.
[2] Z. Bai and Y. Su, Dimension reduction of large-scale second-order dynamical systems via a second-order Arnoldi method, SIAM J. Sci. Comput., 26 (5) (2005), 1692-1709. · Zbl 1078.65058
[3] P. Benner, S. Grivet-Talocia, A. Quarteroni, G. Rozza, W. H. A. Schilders, and L. M. Silveira (eds.), Model Order Reduction. Volume 1: System-and Data-Driven Methods and Algorithms, De Gruyter, Berlin, 2020.
[4] P. Benner, S. Grivet-Talocia, A. Quarteroni, G. Rozza, W. H. A. Schilders, and L. M. Silveira (eds.), Model Order Reduction. Volume 2: Snapshot-Based Methods and Algorithms, De Gruyter, Berlin, 2020.
[5] P. Benner, S. Grivet-Talocia, A. Quarteroni, G. Rozza, W. H. A. Schilders, and L. M. Silveira (eds.), Model Order Reduction. Volume 3: Applications, De Gruyter, Berlin, 2020.
[6] A. Bondenson, T. Rylander, and P. Ingelstrom, Computational Electromagnetics, Springer, 2005. · Zbl 1111.78001
[7] R. U. Borner, O. G. Ernst, and K. Spitzer, Fast 3-d simulation of transient electromagnetic fields by model reduction in the frequency domain using Krylov subspace projection, Geophys. J. Int., 173 (3) (2008), 766-780.
[8] A. Bossavit, Computational Electromagnetism: Variational Formulations, Complementarity, Edge Elements, Academic Press, 1998. · Zbl 0945.78001
[9] A. Bossavit, Electromagnétisme en vue de la modélisation, Math. Appl., vol. 14, Springer-Verlag, 2003.
[10] W. L. Briggs, H. Van, and S. McCormick, A Multigrid Tutorial, SIAM, 2000.
[11] A. C. Cangellaris and L. Zhao, Model order reduction techniques for electromagnetic macromodelling based on finite methods, Int. J. Numer. Model., 13 (2-3) (2000), 181-197. · Zbl 0973.78020
[12] G. Ciuprina, D. Ioan, R. Janssen, and E. van der Heijden, MEEC models for RFIC design based on coupled electric and magnetic circuits, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., 34 (3) (2015), 395-408.
[13] G. Ciuprina, D. Ioan, I. A. Lazar, and B. Dita, Vector fitting based adaptive frequency sampling for compact model extraction on hpc systems, IEEE Trans. Magn., 48 (2) (2012), 431-434.
[14] G. Ciuprina, D. Ioan, A. S. Lup, L. M. Silveira, A. Duca, and M. Kraft, Simplification by pruning as a model order reduction approach for RF-MEMS switches, Compel, 39 (2) (2019), 511-523.
[15] G. Ciuprina, D. Ioan, M. Popescu, and A. S. Lup, Electric circuit element boundary conditions in the finite element method for full-wave frequency domain passive devices, in W. H. A. Schilders (eds.) Scientific Computing in Electrical Engineering. Mathematics in Industry, pp. 1-8, under review.
[16] G. Ciuprina, J. Fernández Villena, D. Ioan, Z. Ilievski, S. Kula, E. J. W. ter Maten, K. Mohaghegh, R. Pulch, W. H. A. Schilders, L. Miguel Silveira, A. Stefanescu, and M. Striebel, Parameterized Model Order Reduction, vol. 21, pp. 267-359, Springer, 2015.
[17] A. Devgan et al., How to efficiently capture on-chip inductance effects: Introducing a new circuit element K, in IEEE/ACM Int. Conf. CAD, 2000.
[18] C. A. Felippa, Introduction to Finite Element Methods. Department of Aerospace Engineering Sciences and Center for Aerospace Structures University of Colorado Boulder, Colorado 80309-0429, USA Last updated 2004.
[19] R. W. Freund and P. Feldman, Reduced-order modeling of large passive linear circuits by means of the SYPVL algorithm, in Proc. of 1996 IEEE/ACM Int. Conf. on Computer-aided Design, 1997.
[20] S. Funken et al., Efficient implementation of adaptive P1-FEM in Matlab, Comput. Methods Appl. Math., 11 (4) (2011), 460-490. · Zbl 1284.65197
[21] I. F. Hantila and D. Ioan, Voltage-current relation of circuit elements with field effects, Rev. Roum. Sci. Tech., Sér. Électrotech. Énerg., 39 (3) (1994), 405-416.
[22] H. Tutorial, Adaptive low-order FEM and hp-FEM. http://hpfem.org.
[23] R. Hiptmair, F. Kramer, and J. Ostrowski, A robust Maxwell formulation for all frequencies, IEEE Trans. Magn., 44 (6) (2008), 682-685.
[24] R. Hiptmair and J. Ostrowski, Electromagnetic Port Boundary Conditions: Topological and Variational Perspective, Technical Report 2020-27, Seminar for Applied Mathematics, ETH Zürich, Switzerland, 2020.
[25] V. Hutson, J. S. Pym, and M. J. Cloud, Applications of Functional Analysis and Operator Theory, Elsevier Science, 2005. · Zbl 1066.47001
[26] H. Igarashi, On the property of the curl-curl matrix in finite element analysis with edge elements, IEEE Trans. Magn., 37 (5) (2001), 3129-3132.
[27] D. Ioan, R. Barbulescu, L. M. Silveira, and G. Ciuprina, Reduced order models of myelinated axonal compartments, J. Comput. Neurosci., 47 (2) (2019), 141-166. · Zbl 1427.92027
[28] D. Ioan, G. Ciuprina, and S. Kula, Reduced order models for hf interconnect over lossy semiconductor substrate. IEEE Workshop on Signal Propagation on Interconnects, pp. 233-236, 2007.
[29] D. Ioan, G. Ciuprina, and M. Radulescu, Algebraic sparsefied partial equivalent electric circuit (ASPEEC), in Scientific Computing in Electrical Engineering, volume 9, pp. 45-50, Springer, 2006. · Zbl 1157.78368
[30] D. Ioan, G. Ciuprina, M. Radulescu, and E. Seebacher, Compact modeling and fast simulation of on-chip interconnect lines, IEEE Trans. Magn., 42 (4) (2006), 547-550.
[31] D. Ioan and I. Munteanu, Missing link rediscovered: The electromagnetic circuit element concept, JSAEM Stud. Appl. Electromagn. Mech., 8 (1999), 302-320.
[32] D. Ioan, I. Munteanu, and C. G. Constantin, The best approximation of the field effects in electric circuit coupled problems, IEEE Trans. Magn., 34 (5) (1998), 3210-3213.
[33] J. D. Jackson, Electrodynamics, Wiley, 1975.
[34] H. Ji, A. Devgan, and W. Dai, KSim: a stable and efficient RKC simulator for capturing on-chip inductance effect, in Proc. of 2001 Asia and South Pacific Design Automation Conference, 2001.
[35] J. Kanapka, J. Phillips, and J. White, Fast methods for extraction and sparsification of substrate coupling, in Proc. of the 37th annual Design Automation Conference, 2000.
[36] T. J. Klemas, Full-wave Algorithms for Model Order Reduction and Electromagnetic Analysis of Impedance and Scattering. Diss. MIT, 2005.
[37] M. Kuczmann, Potential Formulations in Magnetic Applying the Finite Element Method, Lecture notes Laboratory of Electromagnetic Fields, “Szechenyi Istvan” University, Gyor, Hungary, 2009.
[38] S. Kurz, Some remarks about flux linkage and inductance, Adv. Radio Sci., 2 (2004), 39-44.
[39] A. S. Lup, G. Ciuprina, D. Ioan, A. Duca, A. Nicoloiu, and D. Vasilache, Physics-aware macromodels for MEMS switches, Compel, 39 (2) (2020), 497-509.
[40] A. Odabasioglu, M. Celik, and L. T. Pileggi, Prima: Passive reduced-order interconnect macromodeling algorithm, in Proc. of IEEE/ACM Int. Conf. on Computer-aided design, 1997.
[41] S. Polstyanko and J.-F. Lee, Adaptive finite element electrostatic solver, IEEE Trans. Magn., 37 (5) (2001), 3120-3124.
[42] R. Radulet et al., Introduction des parametres transitoires dans l’etude des circuits electrique lineaires ayant des elements non filiformes et avec pertes suplimen-taires, Rev. Roum. Sci. Tech., Sér. Électrotech. Énerg., 11 (4) (1966), 565-639.
[43] N. N. Rao, Fundamentals of Electromagnetics for Electrical and Computer Engineering, Pearson Prentice Hall, 2009.
[44] F. Rapetti and G. Rousseaux, On quasi-static models hidden in Maxwell’s equations, Appl. Numer. Math., (2012), 1-15.
[45] R. F. Remis, Low-frequency model-order reduction of electromagnetic fields without matrix factorization, IEEE Trans. Microw. Theory Tech., 52 (9) (2004), 2298-2304.
[46] E. B. Rudnyi et al., mor4ansys: Generating compact models directly from ansys models, in Proc. of 2004 Nanotechnology Conf. and Trade Show, Nanotech., 2004.
[47] A. E. Ruehli, Inductance calculations in a complex integrated circuit environment, IBM J. Res. Dev., 16 (5) (1972), 470-481.
[48] B. N. Sheehan, ENOR: Model order reduction of RLC circuits using nodal equations for efficient factorization, in Proc. of IEEE 36th Design Automation Conference, 1999.
[49] L. M. Silveira et al., A coordinate-transformed Arnoldi algorithm for generating guaranteed stable reduced-order models of RLC circuits, Comput. Methods Appl. Mech. Eng., 169 (3) (1999), 377-389. · Zbl 0941.78013
[50] R. D. Slone et al., Multipoint Galerkin asymptotic waveform evaluation for model order reduction of frequency domain FEM electromagnetic radiation problems, IEEE Trans. Antennas Propag., 49 (10) (2000), 1504-1513. · Zbl 1001.78019
[51] P. Sumant et al., Reduced-order models of finite element approximations of electromagnetic devices exhibiting statistical variability, IEEE Trans. Antennas Propag., 60 (1) (2012), 301-309. · Zbl 1369.78696
[52] A. Timotin, The passive electromagnetic circuit element (in Romanian), Rev. Roum. Sci. Tech., Sér. Électrotech. Énerg., 21 (2) (1971), 347-362.
[53] H. Wu and A. C. Cangellaris, Krylov model order reduction of finite element approximations of electromagnetic devices with frequency-dependent material properties, Int. J. Numer. Model., 20 (5) (2007), 217-235. · Zbl 1138.78011
[54] H. Yu and L. He, Vector potential equivalent circuit based on PEEC inversion, in Proc. of 40th annual Design Automation Conference, 2003.
[55] S. Zaglmayr, High Order Finite Element Methods for Electromagnetic Field Computation, Thesis -Linz Univ, 2006.
[56] L. Zhao and A. C. Cangellaris, Reduced-order modeling of electromagnetic field interactions in unbounded domains truncated by perfectly matched layers, Microw. Opt. Technol. Lett., 17 (1) (1998), 62-66.
[57] Y. Zhu and A. C. Cangellaris, Finite element-based model order reduction of electromagnetic devices, Int. J. Numer. Model., 15 (1) (2002), 73-92. · Zbl 0993.78001
[58] O. C. Zienkiewicz and R. L. Taylor, The Finite Element Method: Its Basis and Fundamentals, Elsevier, 2005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.