×

Temporal discretization choices for stable boundary element methods in electromagnetic scattering problems. (English) Zbl 1211.78032

Authors’ abstract: Diverse alternative temporal discretization schemes are analyzed for stable numerical solution of the surface integral equations in obtaining the transient scattering response of arbitrarily shaped conducting bodies. Streamlined formulations for three main categories including using either the conventional time integrators or the subdomain temporal basis functions, or the entire-domain time bases are presented in conceptually similar frameworks for solving types of the electric, magnetic, and combined field integral equations. To this end, first compatible temporal interpolations with conveniently usable time integrators are introduced based on stability analysis of the delay differential equations (DDE). Detailed guidelines for effective implementation of appropriate subdomain time basis functions are then studied. It is demonstrated that since in the latter approach the time derivatives are handled analytically, the extension of the stable region tremendously enhances while approaching small time step sizes. Eventually, the orthogonal weighted Laguerre polynomials are set forth to provide unconditionally stable schemes. Besides, adaptive partitioning of triangular patches is proposed to efficiently control the precision of numerical quadratures over the surface of source distribution. Numerical results are verified through comparison with the results obtained using the finite integration technique (FIT). Convergence behaviour of the widely used schemes is also investigated.

MSC:

78M15 Boundary element methods applied to problems in optics and electromagnetic theory
78A45 Diffraction, scattering
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] T. Abboud, J.C. Nedelec, J. Volakis, Stable solution of the retarded potential equations, in: Proc. Appl. Comput. Electromagn. Soc. Conf., Monterey, CA, 2001; T. Abboud, J.C. Nedelec, J. Volakis, Stable solution of the retarded potential equations, in: Proc. Appl. Comput. Electromagn. Soc. Conf., Monterey, CA, 2001
[2] Abramowitz, M.; Stegun, I. A., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (1972), Dover: Dover New York · Zbl 0543.33001
[3] Aygün, K.; Shanker, B.; Ergin, A. A.; Michielssen, E., A two-level plane wave time-domain algorithm for fast analysis of EMC/EMI problems, IEEE Trans. Electromagn. Compat., 44, 1, 152-164 (2002)
[4] Bagci, H.; Yilmaz, A. E.; Lomakin, V.; Michielssen, E., Fast solution of mixed-potential time-domain integral equations for half space environments, IEEE Trans. Geosci. Remote Sens., 43, 2, 269-279 (2005)
[5] Bellen, A.; Zennaro, M., Numerical Methods for Delay Differential Equations (2003), Clarendon Press: Clarendon Press Oxford · Zbl 0749.65042
[6] Bladel, J. V., Electromagnetic Fields (1985), Hemisphere Publishing Corporation: Hemisphere Publishing Corporation Washington, DC
[7] Bluck, M. J.; Walker, S. P., Time-domain BIE analysis of large three-dimensional electromagnetic scattering problems, IEEE Trans. Antennas Propag., 45, 5, 894-901 (1997)
[8] Chung, Y.-S.; Sarkar, T. K.; Jung, B. H.; Salazar-Palma, M.; Ji, Z.; Jang, S.; Kim, K., Solution of time domain electric field integral equation using Laguerre polynomials, IEEE Trans. Antennas Propag., 52, 9, 2319-2328 (2004) · Zbl 1368.78020
[9] Clemens, M.; Weiland, T., Discrete electromagnetism with the finite integration technique, Progr. Electromagn. Res., 32, 65-87 (2001)
[10] Davies, P. J., A stability analysis of a time marching scheme for the general surface electric field integral equation, Appl. Numer. Math., 27, 1, 33-57 (1998) · Zbl 0930.65141
[11] Davies, P. J.; Duncan, D. B., Averaging technique for time-marching schemes for retarded potential integral equations, Appl. Numer. Math., 23, 3, 291-310 (1997) · Zbl 0882.65145
[12] Dodson, S.; Walker, S. P.; Bluck, M. J., Implicitness and stability of time domain integral equation scattering analysis, Appl. Comp. Electromagn. Soc. J., 13, 3, 291-301 (1998)
[13] Duffy, M. G., Quadrature over a pyramid or cube of integrands with a singularity at a vertex, SIAM J. Numer. Anal., 19, 6, 1260-1262 (1982) · Zbl 0493.65011
[14] A. Geranmayeh, W. Ackermann, T. Weiland, Proper combination of integrators and interpolators for stable marching-on-in time schemes, in: Proc. 10th IEEE Int. Conf. on Electromagn. in Adv. Appl., ICEAA’07, vol. 415, Torino, Italy, 2007; A. Geranmayeh, W. Ackermann, T. Weiland, Proper combination of integrators and interpolators for stable marching-on-in time schemes, in: Proc. 10th IEEE Int. Conf. on Electromagn. in Adv. Appl., ICEAA’07, vol. 415, Torino, Italy, 2007
[15] A. Geranmayeh, W. Ackermann, T. Weiland, Survey of temporal basis functions for integral equation methods, in: Proc. 7th IEEE Workshop on Computational Electromanetics in Time-Domain, CEM-TD’07, vol. 533, Perugia, Italy, 2007; A. Geranmayeh, W. Ackermann, T. Weiland, Survey of temporal basis functions for integral equation methods, in: Proc. 7th IEEE Workshop on Computational Electromanetics in Time-Domain, CEM-TD’07, vol. 533, Perugia, Italy, 2007 · Zbl 1211.78032
[16] Graglia, R. D.; Wilton, D. R.; Peterson, A. F., Higher order interpolatory vector bases for computational electromagnetics, IEEE Trans. Antennas Propag., 45, 3, 329-342 (1997)
[17] Hu, J.-L.; Chan, C. H., Improved temporal basis function for time-domain electric field integral equation method, Electron. Lett., 35, 11, 883-885 (1999)
[18] Hu, J.-L.; Chan, C. H.; Xu, Y., A fast solution of the time-domain integral equation using fast Fourier transformation, Microw. Opt. Technol. Lett., 25, 3, 172-175 (2000)
[19] Hu, J.-L.; Chan, C. H.; Xu, Y., A new temporal basis function for the time-domain integral equation method, IEEE Microw. Wireless Compon. Lett., 11, 465-466 (2001)
[20] Jiang, G. X.; Zhu, H. B.; Ji, G. Q.; Cao, W., Improved stable scheme for the time domain integral equation method, IEEE Microw. Wireless Compon. Lett., 17, 1, 1-3 (2007)
[21] Jones, D. S., Methods in Electromagnetic Wave Propagation (1994), Oxford Sci.: Oxford Sci. Oxford, UK
[22] Jung, B. H.; Sarkar, T. K., Time-domain electric-field integral equation with central finite difference, Microw. Opt. Technol. Lett., 31, 6, 429-435 (2001)
[23] Jung, B. H.; Sarkar, T. K., Time-domain CFIE for the analysis of transient scattering from arbitrarily shaped 3D conducting objects, Microw. Opt. Technol. Lett., 34, 4, 289-296 (2002)
[24] Jung, B. H.; Sarkar, T. K.; Chung, Y.-S.; Salazar-Palma, M.; Ji, Z., Time-domain combined field integral equation using Laguerre polynomials as temporal basis functions, Int. J. Numerical Modeling: Electronic Networks, Devices and Fields, 17, 251-268 (2004) · Zbl 1049.78029
[25] Khlifi, R.; Russer, P., Hybrid space-discretizing method—method of moments for the analysis of transient interface, IEEE Trans. Microw. Theory Tech., 54, 12, 4440-4447 (2006)
[26] Manara, G.; Monorchio, A.; Rosace, S., A stable time domain boundary element method for the analysis of electromagnetic scattering and radiation problems, Eng. Anal. Bound. Elements, 27, 4, 389-401 (2003) · Zbl 1035.78012
[27] Pingenot, J.; Chakraborty, S.; Jandhyala, V., Polar integration for exact space-time quadrature in time-domain integral equations, IEEE Trans. Antennas Propag., 54, 10, 3037-3042 (2006) · Zbl 1369.78903
[28] Pisharody, G.; Weile, D. S., Robust solution of time-domain integral equations using loop-tree decomposition and bandlimited extrapolation, IEEE Trans. Antennas Propag., 53, 6, 2089-2098 (2005)
[29] Press, W. H.; Teukolsky, S. A.; Vetterling, W. T.; Flannery, B. P., Numerical Recipes: The Art of Scientific Computing (2007), Cambridge Univ. Press: Cambridge Univ. Press Cambridge · Zbl 1132.65001
[30] Rao, S. M., Time Domain Electromagnetics (1999), Academic Press
[31] Rao, S. M.; Sarkar, T. K., An efficient method to evaluate the time-domain scattering from arbitrarily shaped conducting bodies, Microw. Opt. Technol. Lett., 17, 5, 321-325 (1998)
[32] Ryne, B. P.; Smith, P. D., Stability of time marching algorithms for the electric field integral equation, J. Electromagn. Waves Appl., 4, 1181-1205 (1990)
[33] Shanker, B.; Ergin, A.; Lu, M.; Michielssen, E., Analysis of transient electromagnetic scattering from closed surfaces using a combined field integral equation, IEEE Trans. Antennas Propag., 48, 7, 1064-1074 (2000) · Zbl 1368.78061
[34] Smith, P. D., Instabilities in time marching methods for scattering: Cause and rectification, Electromagn., 10, 439-451 (1990)
[35] Wang, P.; Xia, M. Y.; Jin, J. M.; Zhou, L. Z., Time-domain integral equation solvers using quadratic B-spline temporal basis functions, Microw. Opt. Technol. Lett., 49, 5, 1154-1159 (2007)
[36] Weile, D. S.; Pisharody, G.; Chen, N.; Shanker, B.; Michielssen, E., A novel scheme for the solution of the time-domain integral equations of electromagnetics, IEEE Trans. Antennas Propag., 52, 1, 283-295 (2004)
[37] Wildman, R. A.; Weile, D. S., An accurate broad-band method of moments using higher order basis functions and tree-loop decomposition, IEEE Trans. Antennas Propag., 52, 11, 3005-3011 (2004)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.