×

The effect of the 2-D Laplacian operator approximation on the performance of finite-difference time-domain schemes for Maxwell’s equations. (English) Zbl 1126.78020

Summary: The behavior of the finite-difference time-domain method (FDTD) is investigated with respect to the approximation of the two-dimensional Laplacian, associated with the curl-curl operator. Our analysis begins from the observation that in a two-dimensional space the Yee algorithm approximates the Laplacian operator via a strongly anisotropic 5-point approximation. It is demonstrated that with the aid of a transversely extended-curl operator any 9-point Laplacian can be mapped onto FDTD update equations. Our analysis shows that the mapping of an isotropic Laplacian approximation results in an isotropic and less dispersive FDTD scheme. The properties of the extended curl are further explored and it is proved that a unity Courant number can be achieved without the resulting scheme suffering from grid decoupling. Additionally, the case of a 25-point isotropic Laplacian is examined and it is shown that the corresponding scheme is fourth order accurate in space and exhibits isotropy up to sixth order. Representative numerical simulations are performed that validate the theoretically derived results.

MSC:

78M20 Finite difference methods applied to problems in optics and electromagnetic theory
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] J. Fang, Time domain finite difference computation for Maxwell’s equations, Ph.D. thesis, University of California at Berkeley, Berkeley, CA, 1989.; J. Fang, Time domain finite difference computation for Maxwell’s equations, Ph.D. thesis, University of California at Berkeley, Berkeley, CA, 1989.
[2] Yefet, A.; Petropoulos, P. G., A staggered fourth-order accurate explicit finite difference scheme for the time-domain Maxwell’s equations, J. Comput. Phys., 168, 2, 286-315 (2001) · Zbl 0981.78012
[3] Zygiridis, T. T.; Tsiboukis, T. D., Low-dispersion algorithms based on the higher order (2,4) FDTD method, IEEE Trans. Microwave Theory Tech., 52, 4, 1321-1327 (2004)
[4] Sun, G.; Trueman, C. W., Optimized finite-difference time-domain methods based on the (2,4) stencil, IEEE Trans. Microwave Theory Tech., 53, 3, 832-842 (2005)
[5] Hadi, M. F.; Piket-May, M., A modified FDTD (2,4) scheme for modeling electrically large structures with high-phase accuracy, IEEE Trans. Antennas Propagat., 45, 2, 254-264 (1997)
[6] Young, J. L.; Gaitonde, D.; Shang, J. S., Toward the construction of a fourth-order difference scheme for transient EM wave simulation: staggered grid approach, IEEE Trans. Antennas Propagat., 45, 11, 1573-1580 (1997) · Zbl 0947.78612
[7] Lele, S. K., Compact finite difference schemes with spectral resolution, J. Comput. Phys., 101, 16-42 (1992) · Zbl 0759.65006
[8] Liu, Y., Fourier analysis of numerical algorithms for the Maxwell equations, J. Comput. Phys., 124, 396-416 (1996) · Zbl 0858.65125
[9] Xiao, F.; Tang, X.; Zhang, X., The construction of low-dispersive FDTD on hexagon, IEEE Trans. Antennas Propagat., 53, 11, 3697-3703 (2005) · Zbl 1369.78761
[10] Juntunen, J. S.; Tsiboukis, T. D., Reduction of numerical dispersion in FDTD method through artificial anisotropy, IEEE Trans. Microwave Theory Tech., 48, 4, 582-588 (2000)
[11] Wang, S.; Teixeira, F. L., A finite-difference time-domain algorithm optimized for arbitrary propagation angles, IEEE Trans. Antennas Propagat., 51, 9, 2456-2463 (2003)
[12] Wang, S.; Teixeira, F. L., Dispersion-relation-preserving FDTD algorithms for large-scale three-dimensional problems, IEEE Trans. Antennas Propagat., 51, 8, 1818-1828 (2003)
[13] Wang, S.; Teixeira, F. L., A three-dimensional angle-optimized finite-difference time-domain algorithm, IEEE Trans. Microwave Theory Tech., 51, 3, 811-817 (2003)
[14] Wang, S.; Teixeira, F. L., Grid-dispersion error reduction for broadband FDTD electromagnetic simulations, IEEE Trans. Magn., 40, 2, 1440-1443 (2004)
[15] Wang, S.; Teixeira, F. L., Lattice models for large-scale simulations of coherent wave scattering, Phys. Rev. E, 69 (2004)
[16] Shlager, K. L.; Schneider, J. B., Comparison of the dispersion properties of several low-dispersion finite-difference time-domain algorithms, IEEE Trans. Antennas Propagat., 51, 3, 642-653 (2003)
[17] Finkelstein, B.; Kastner, R., Finite difference time domain dispersion reduction schemes, J. Comput. Phys., 221, 1, 422-438 (2007) · Zbl 1129.78022
[18] Liu, Q. H., The PSTD algorithm: a time-domain method requiring only two cells per wavelength, Microwave Opt. Technol. Lett., 15, 3, 158-165 (1997)
[19] Liu, Q. H., Large-scale simulations of electromagnetic and acoustic measurements using the pseudospectral time-domain (PSTD) algorithm, IEEE Trans. Geosci. Remote Sens., 37, 2, 917-926 (1999)
[20] Liu, Q. H.; Zhao, G., Review of PSTD methods for transient electromagnetics, Int. J. Numer. Model., 17, 3, 99-323 (2004) · Zbl 1048.78014
[21] Hesthaven, J. S., High-order accurate methods in time-domain computational electromagnetics: a review, Adv. Imag. Elect. Phys., 127, 59-123 (2003)
[22] Kantartzis, N. V.; Tsiboukis, T. D., Higher-order FDTD Schemes for Waveguide and Antenna Structures (2006), Morgan & Claypool: Morgan & Claypool San Rafel, CA
[23] Kantartzis, N. V.; Tsiboukis, T. D., A higher order nonstandard FDTD-PML method for the advanced modeling of complex EMC problems in generalized 3-D curvilinear coordinates, IEEE Trans. Electromagn. Compat., 46, 1, 2-11 (2004)
[24] Kantartzis, N. V.; Tsiboukis, T. D., A generalized methodology based on higher-order conventional and non-standard FDTD concepts for the systematic development of enhanced dispersionless wide-angle absorbing perfectly matched layers, Int. J. Numer. Model., 13, 5, 417-440 (2000) · Zbl 1090.78527
[25] Panaretos, A. H.; Aberle, J. T.; Díaz, R. E., A three-dimensional finite-difference time-domain scheme based on a transversely extended curl operator, IEEE Trans. Microwave Theory Tech., 54, 12, 4237-4246 (2006)
[26] Yee, K. S., Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media, IEEE Trans. Antennas Propagat., 14, 8, 302-307 (1966) · Zbl 1155.78304
[27] Taflove, A. T.; Hagness, S. C., Computational Electrodynamics: The Finite-Difference Time-Domain Method (2000), Artech House · Zbl 0963.78001
[28] Kunz, K. S.; Luebbers, R. J., The Finite Difference Time Domain Method for Electromagnetics (1993), CRC Press
[29] Patra, M.; Karttunen, M., Stencils with isotropic discretization error for differential operators, Numer. Methods Part. Diff. Equ., 22, 4, 936-953 (2006) · Zbl 1098.65108
[30] Cohen, G. H., Higher-order Numerical Methods for Transient Wave Equations (2002), Springer
[31] E.A. Forgy, A time-domain method for computational electromagnetics with isotropic numerical dispersion on an overlapped lattice, Master’s thesis, University of Illinois at Urbana, Champaign, 1998.; E.A. Forgy, A time-domain method for computational electromagnetics with isotropic numerical dispersion on an overlapped lattice, Master’s thesis, University of Illinois at Urbana, Champaign, 1998.
[32] Bi, Z.; Wu, K.; Wu, C.; Litva, J., A new finite-difference time-domain algorithm for solving Maxwell’s equations, IEEE Microwave Guided Wave Lett., 1, 12, 382-384 (1991)
[33] Min, M. S.; Teng, C. H., The instability of the Yee scheme for the magic time step, J. Comput. Phys., 166, 418-424 (2001) · Zbl 1170.78432
[34] Ray, S. L., Grid decoupling in finite element solutions of Maxwell’s equations, IEEE Trans. Antennas Propagat., 40, 4, 443-445 (1992)
[35] Forgy, E. A.; Chew, W. C., A time-domain method with isotropic dispersion and increased stability on an overlapped lattice, IEEE Trans. Antennas Propagat., 50, 7, 983-996 (2002) · Zbl 1368.78167
[36] Celuch-Marcysiak, M.; Gwarek, W. K., On the nature of solutions produced by finite difference schemes in the time domain, Int. J. Numer. Model., 12, 23-40 (1999) · Zbl 0936.78012
[37] Koh, I. S.; Kim, H.; Lee, J. M.; Yook, J. G.; Pil, C. S., Novel explicit 2-D FDTD scheme with isotropic dispersion and enhanced stability, IEEE Trans. Antennas Propagat., 54, 11, 3505-3510 (2006)
[38] Collatz, L., The Numerical Treatment of Differential Equations (1966), Springer-Verlag · Zbl 0221.65088
[39] G. Cohen, A class of schemes, fourth order in space and time, for the 2D wave equation, in: Proceedings of the Sixth IMACS Intenational Symposium on Computer Methods for Partial Differential Equations, Bethlehem, PA, USA, 1987, pp. 23-27.; G. Cohen, A class of schemes, fourth order in space and time, for the 2D wave equation, in: Proceedings of the Sixth IMACS Intenational Symposium on Computer Methods for Partial Differential Equations, Bethlehem, PA, USA, 1987, pp. 23-27.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.