×

Infinigons of the hyperbolic plane and grossone. (English) Zbl 1410.51023

Summary: In this paper, we study the contribution of the theory of grossone to the study of infinigons in the hyperbolic plane. We can see that the theory of grossone can help us to obtain a much more precise classification for these objects than in the traditional setting.
Editorial remark: For more information on the notion of grossone, introduced by Y. D. Sergeyev, see [Arithmetic of infinity. Cosenza: Edizioni Orizzonti Meridionali (2003; Zbl 1076.03048)]; see also [A. E. Gutman and S. S. Kutateladze, Sib. Mat. Zh. 49, No. 5, 1054–1076 (2008; Zbl 1224.03045); translation in Sib. Math. J. 49, No. 5, 835–841 (2008)].

MSC:

51M09 Elementary problems in hyperbolic and elliptic geometries
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Coxeter, H. S.M., Regular honeycombs in hyperbolic space, Int. Congr. Math., 3, 155-169 (1954) · Zbl 0056.38603
[2] Gordon, P., Numerical cognition without words: Evidence from Amazonia, Science, 306, 496-499 (2004)
[3] Lolli, G., Infinitesimals and infinites in the history of mathematics: A brief survey, Appl. Math. Comput., 218, 16, 7979-7988 (2012) · Zbl 1255.01001
[4] Margenstern, M., On the infinigons of the hyperbolic plane, a combinatorial approach, Fundam. Inf., 56, 3, 255-272 (2003) · Zbl 1047.52012
[5] Margenstern, M., Cellular Automata in Hyperbolic Spaces: Theory, vol. 1, 422 (2007), Old City Publishing: Old City Publishing Philadelphia · Zbl 1147.68583
[7] Margenstern, M., Using grossone to count the number of elements of infinite sets and the connection with bijections, p-Adic Numbers Ultrametric Anal. Appl., 3, 3, 196-204 (2011) · Zbl 1259.03064
[8] Margenstern, M., Small Universal Cellular Automata in Hyperbolic Spaces, A Collection of Jewels, (Zelinka, I.; Chen, G.; Adamatzky, A., Emergence, Complexity and Computation Series (2013), Springer), 320 · Zbl 1278.37021
[10] Rozenfeld, B. A., Neevklidovy Prostranstva, 547 (1969), Nauka: Nauka Moscow
[11] Sergeyev, Ya. D., Arithmetic of Infinity (2003), Edizioni Orizzonti Meridionali: Edizioni Orizzonti Meridionali CS · Zbl 1076.03048
[12] Sergeyev, Ya. D., Blinking fractals and their quantitative analysis using infinite and infinitesimal numbers, Chaos Solitons Fractals, 33, 1, 50-75 (2007)
[13] Sergeyev, Ya. D., A new applied approach for executing computations with infinite and infinitesimal quantities, Informatica, 19, 4, 567-596 (2008) · Zbl 1178.68018
[14] Sergeyev, Ya. D., Lagrange lecture: Methodology of numerical computations with infinities and infinitesimals, Rendiconti del Seminario Matematico dell’Università e del Politecnico di Torino, 68, 2, 95-113 (2010) · Zbl 1211.65002
[15] Sergeyev, Ya. D., Counting systems and the First Hilbert problem, Nonlinear Anal. Theory Methods Appl., 72, 3-4, 1701-1708 (2010) · Zbl 1191.03038
[16] Sergeyev, Ya. D., Using blinking fractals for mathematical modelling of processes of growth in biological systems, Informatica, 22, 4, 559-576 (2011) · Zbl 1268.37092
[17] Sergeyev, Ya. D., Solving ordinary differential equations by working with infinitesimals numerically on the infinity computer, Appl. Math. Comput., 219, 22, 10668-10681 (2013) · Zbl 1303.65061
[18] Sergeyev, Ya. D., Numerical computations with infinite and infinitesimal numbers: Theory and applications, (Sorokin, A.; Pardalos, P. M., Dynamics of Information Systems: Algorithmic Approaches (2013), Springer: Springer New York), 1-66
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.