×

The investigation of natural super-cavitation flow behind three-dimensional cavitators: full cavitation model. (English) Zbl 1446.76030

Summary: In this study, natural super-cavitating flow around three different conical cavitators with wedge angles of \(30^°\), \(45^°\) and \(60^°\) is investigated. We apply the \(k-\epsilon\) turbulence model and the volume of fluid (VOF) technique to numerically study the three-dimensional cavitating flow around the cavitators. The turbulence approach is coupled with a mass transfer model which is implemented into the finite-volume package. Simulations are performed for different cavitation numbers. Finally, the effects of some important parameters such as the cavitation index, inlet velocity, Froude number and wedge angle of cavitators on the geometrical characteristics of the super-cavities are discussed. Our numerical results are in good agreement with the experimental data.

MSC:

76-10 Mathematical modeling or simulation for problems pertaining to fluid mechanics
76B10 Jets and cavities, cavitation, free-streamline theory, water-entry problems, airfoil and hydrofoil theory, sloshing
76M12 Finite volume methods applied to problems in fluid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Reichardt, H., The Physical Laws Governing the Cavitation Bubbles Produced Behind Solids of Revolution in a Fluid Flow (1945), Hydrodynamic Research, Kaiser Wilhelm Institute, Göttingen, TPA3/TIB
[2] Lecoffre, Y., Cavitation Bubble Trackers (1999), Balkema, Rotterdam
[3] Park, S.; Rhee, S. H., Computational analysis of turbulent super-cavitating flow around a two-dimensional wedge-shaped cavitator geometry, Comput. Fluids, 70, 73-85 (2012) · Zbl 1365.76237
[4] Nouri, N. M.; Shienejad, A.; Eslamdoost, A., Multi phase computattional fluid dynamics modeling of cavitating flows over axisymmetric head-forms, Int. J. Ind. Eng. Product Res., 19, 5, 71-78 (2008)
[5] Kulkarni, S. S.; Pratap, R., Studies on the dynamics of a supercavitating projectile, Appl. Math. Model., 24, 2, 113-129 (2000) · Zbl 0973.76543
[6] Ma, C.; Jia, D.; Qian, Z.-F.; Feng, D.-H., Study on cavitation flows of underwater vehicle, J. Hydrodyn., Ser. B, 18, 3, 373-377 (2006)
[7] Li, D.; Grekula, M.; Lindell, P., A modified \(S S T k - \omega\) turbulence model to predict the steady and unsteady sheet cavitation on 2d and 3d hydrofoils, ann arbor, USA, Proceedings of the 7th International Symposium on Cavitation CAV2009. August 16-20 (2009)
[8] Guo, J. H.; Lu, C. J.; Chen, Y., Characteristics of flow field around an under-water projectile with natural and ventilated cavitation, J. Shanghai Jiaotong Univ. (Sci.), 16, 2, 236-241 (2011) · Zbl 1469.76128
[9] Ji, B.; Luo, X.; Peng, X.; Zhang, Y.; Wu, Y.; Xu, H., Numerical investigation of the ventilated cavitating flow around an under-water vehicle based on a three-component cavitation model, J. Hydrodyn., Ser. B, 22, 6, 753-759 (2010)
[10] Hu, C.; Yang, H.; Zhao, C.; Huang, W., Unsteady supercavitating flow past cones, J. Hydrodyn., Ser. B, 18, 3, 262-272 (2006) · Zbl 1203.76017
[11] Bernad, S.; Susan-Resiga, R.; Muntean, S.; Anton, I., Numerical analysis of the cavitating flows, Proc. Romanian Acad., Ser. A, 7, 1, 33-45 (2006)
[12] Shang, Z., Numerical investigations of supercavitation around blunt bodies of submarine shape, Appl. Math. Model., 37, 20-21, 8836-8845 (2013) · Zbl 06951034
[13] Choi, J. H.; Penmetsa, R. C.; Grandhi, R. V., Shape optimization of the cavitator for a supercavitating torpedo, Struct. Multidisc. Optim., 29, 2, 159-167 (2005)
[14] Shafaghat, R.; Hosseinalipour, S. M.; Lashgari, I.; Vahedgermi, A., Shape optimization of axisymmetric cavitators in supercavitating flows using the NSGA II algorithm, Appl. Ocean Res., 33, 3, 193-198 (2011)
[15] Amromin, E., Analysis of body supercavitation in shallow water, Ocean Eng., 34, 11-12, 1602-1606 (2007)
[16] Kwack, Y. K.; Ko, S. H., Numerical analysis for supercavitating flows around axisymmetric cavitators, Int. J. Naval Archit. Ocean Eng., 5, 3, 325-332 (2013)
[17] Roohi, E.; Zahiri, A. P.; Passandideh-Fard, M., Numerical simulation of cavitation around a two-dimensional hydrofoil using VOF method and LES turbulence model, Appl. Math. Model., 37, 9, 6469-6488 (2013) · Zbl 06948898
[18] Kunz, R. F.; Stinebring, D. R.; Chyczewski, T. S.; Boger, D.; Gibeling, H. J., Multi-phase CFD analysis of natural and ventilated cavitation about submerged bodies, Proceedings of the 3rd ASME/JSME joint fluid engineering conference, ASME, FEDSM 99-7364, July 18-23 (1999)
[19] Schnerr, G.; Sauer, J., Physical and numerical modeling of unsteady cavitation dynamics, 4th International conference on multiphase flows, May 27-June 1 (2001) · Zbl 1002.76009
[20] Merkle, C. L.; Feng, J.; Buelow, P., Computational modeling of the dynamics of sheet cavitation, 3rd International symposium on cavitation, April 7-10 (1998)
[21] Roohi, E.; Pendar, M. R.; Rahimi, A., Simulation of three-dimensional cavitation behind a disk using various turbulence and mass transfer models, Appl. Math. Model., 40, 542-564 (2016) · Zbl 1443.76067
[22] Huang, B.; Zhao, Y.; Wang, G., Large eddy simulation of turbulent vortex-cavitation interactions in transient sheet/cloud cavitating flows, Comput. Fluids, 92, 113-124 (2014) · Zbl 1391.76417
[23] Ji, B.; Luo, X.; Arndt, R. E.A.; Wu, Y., Numerical simulation of three dimensional cavitation shedding dynamics with special emphasis on cavitation-vortex interaction, Ocean Eng., 87, 64-77 (2014)
[24] Passandideh-Fard, M.; Roohi, E., Transient simulations of cavitating flows using a modified volume-of-fluid (VOF) technique, Int. J. Comput. Fluid Dyn., 22, 1, 97-114 (2008) · Zbl 1388.76269
[25] Goncalves, E., Numerical study of unsteady turbulent cavitating flows, Eur. J. Mech. B/Fluids, 30, 1, 26-40 (2011) · Zbl 1222.76059
[26] Khoo, B. C.; Zheng, J. G., Force analysis of underwater object with supercavitation evolution, Ind. J. Geo-Mar. Sci., 42, 8, 957-963 (2013)
[27] Shi, W. D.; Zhang, G. J.; Zhang, D. S., Evaluation of turbulence models for the numerical prediction of transient cavitation around a hydrofoil, 6th International Conference on Pumps and Fans with Compressors and Wind Turbines, IOP Conference Series: Materials Science and Engineering, 52, 062013 (2013)
[28] Charriere, B.; Decaix, J.; Goncalves, E., A comparative study of cavitation models in a venturi flow, Eur. J. Mech. B/Fluids, 49, 287-297 (2015) · Zbl 1408.76377
[29] Wosnik, M.; Schauer, T. J.; Arndt, R. E., Experimental study of a ventilated supercavitating vehicle, 5th International Symposium on Cavitation (2003)
[30] Zhang, X. W.; Wei, Y. J.; Zhang, J. Z.; Wang, C.; Yu, K. P., Experimental research on the shape characters of natural and ventilated supercavitation, J. Hydrodyn., Ser. B, 19, 5, 564-571 (2007)
[31] Ahn, B. K.; Lee, C. S.; Kim, H. T., Experimental and numerical studies on super-cavitating flow of axisymmetric cavitators, Int. J. Naval Archit. Ocean Eng., 2, 1, 39-44 (2010)
[32] Wang, Y.; Liao, L. J.; Du, T. Z.; Huang, C. G.; Liu, Y.; Fang, X.; Liang, N. G., A study on the collapse of cavitation bubbles surrounding the underwater-launched projectile and its fluid-structure coupling effects, Ocean Eng., 84, 228-236 (2014)
[33] Javadpour, M.; Farahat, S.; Ajam, H.; Salari, M.; Nezhad, A. H., An experimental and numerical study of supercavitating flows around axisymmetric cavitators, J. Theor. Appl. Mech., 54, 795-810 (2016)
[34] Reichardt, H., The laws of cavitation bubbles at axially symmetrical bodies in a flow, Ministry of aircraft production (Britain), Report and translations, 766 (1946)
[35] Ahuja, V.; Hosangadi, A.; Arunajatesan, S., Simulations of cavitating flows using hybrid unstructured meshes, J. Fluids Eng., 123, 331-340 (2001)
[36] Singhal, A. K.; Athavale, M. M.; Li, H.; Jiang, Y., Mathematical basis and validation of the full cavitation model, J. Fluids Eng., 124, 617-624 (2002)
[37] Watanabe, M.; Prosperetti, A., The effect of gas diffusion on the nuclei population downstream of a cavitation zone, ASME Fluids Engineering Division Summer Meeting, FED 19-23 (1994)
[38] Reisman, G. E.; Duttweiler, M. E.; Brennen, C. E., Effect of air injection on the cloud cavitation of a hydrofoil, ASME Fluids Engineering Division Summer Meeting, FEDSM’97 22-26 (1997)
[40] Ubbink, O., Numerical prediction of two fluid systems with sharp interfaces (1997), University of London, UK, Phd thesis
[41] Rusche, H., Computational fluid dynamics of dispersed two-phase flows at high phase fractions (2002), Imperial College of Science, Technology and Medicine: Imperial College of Science, Technology and Medicine London, Phd thesis
[42] Semenenko, V. N., Dynamic processes of supercavitation and computer simulation.RTO AVT lecture series on supercavitating flows (2001), Belgium: Von Karman Institute: Belgium: Von Karman Institute Brussels
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.