×

A new interpolation for auxiliary unknowns of the monotone finite volume scheme for 3D diffusion equations. (English) Zbl 1473.65151

Summary: A monotone cell-centered finite volume scheme for diffusion equations on tetrahedral meshes is established in this paper, which deals with tensor diffusion coefficients and strong discontinuous diffusion coefficients. The first novelty here is to propose a new method of interpolating vertex unknowns (auxiliary unknowns) with cell-centered unknowns (primary unknowns), in which a sufficient condition is given to guarantee the non-negativity of vertex unknowns. The second novelty of this paper is to devise a modified Anderson acceleration, which is based on an iterative combination of vertex unknowns and will be denoted as AA-Vertex algorithm, in order to solve the nonlinear scheme efficiently. Numerical testes indicate that our new method can obtain almost second order accuracy and is more accurate than some existing methods. Furthermore, with the same accuracy, the modified Anderson acceleration is much more efficient than the usual one.

MSC:

65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
65B99 Acceleration of convergence in numerical analysis
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] I. Aavatsmark, An introduction to multipoint flux approximations for quadrilateral grids, Comput. Geosci. 6 (3-4) (2002) 405-432. · Zbl 1094.76550
[2] Z. Sheng, G. Yuan, A nine point scheme for the approximation of diffusion operators on distorted quadrilateral meshes, SIAM J. Sci. Comput. 30 (3) (2008) 1341-1361. · Zbl 1167.65049
[3] A. Draganescu, T. F. Dupont, L. R. Scott, Failure of the discrete maximum principle for an elliptic finite element problem, Math. Comput. 74 (249) (2004) 1-23. · Zbl 1074.65129
[4] H. Hoteit, R. Mos, B. Philippe, P. Ackerer, J. Erhel, The maximum principle violations of the mixed-hybrid finite-element method applied to diffusion equations, Numer. Meth. Eng. 55 (12) (2002) 1373C1390. · Zbl 1062.76524
[5] R. Liska, M. Shashkov, Enforcing the discrete maximum principle for linear finite element solutions of second-order elliptic problems, Commun. Comput. Phys. 3 (4) (2008) 852-877. · Zbl 1199.65381
[6] Y. Yao, G. Yuan, Enforcing positivity with conservation for nine-point scheme of nonlinear diffusion equations , Comput. Methods Appl. Mech. Eng. 223-224 (1) (2012) 161-172. · Zbl 1253.65134
[7] J. Lv, G. Yuan, J. Yue, Nonnegativity-preserving repair techniques for the finite element so-lutions of degenerate nonlinear parabolic problems, Numer. Math. Theor. Meth. Appl. 11 (2018) 413-436. · Zbl 1438.65239
[8] M. J. Mlacnik, L. J. Durlofsky, Unstructured grid optimization for improved monotonicity of discrete solutions of elliptic equations with highly anisotropic coefficients, J. Comput. Phys. 216 (1) (2006) 337-361. · Zbl 1173.76413
[9] W. Huang, X. Li, An anisotropic mesh adaptation method for the finite element solution of heterogeneous anisotropic diffusion problems, J. Comput. Phys. 46 (1-2) (2010) 61-73.
[10] W. Huang, Y. Wang, Discrete maximum principle for the weak Galerkin method for anisotropic diffusion problems, Commun. Comput. Phys. 18 (1) (2015) 65-90. · Zbl 1388.65151
[11] J. M. Nordbotten, I. Aavatsmark, G. T. Eigestad, Monotonicity of control volume methods, Numer. Math. 106 (2) (2007) 255-288. · Zbl 1215.76090
[12] E. Burman, A. Ern, Discrete maximum principle for Galerkin approximations of the Laplace operator on arbitrary meshes, C. R. Acad. Sci. Paris, Ser.I 338 (8) (2004) 641-646. · Zbl 1049.65128
[13] C. Le Potier, Finite volume monotone scheme for highly anisotropic diffusion operators on unstructured triangular meshes, C. R. Math. Acad. Sci. Paris 341 (12) (2005) 787-792. · Zbl 1081.65086
[14] K. Lipnikov, M. Shashkov, D. Svyatskiy, Y. Vassilevski, Monotone finite volume schemes for diffusion equations on unstructured triangular and shape-regular polygonal meshes, J. Comput. Phys. 227 (1) (2007) 492-512. · Zbl 1130.65113
[15] K. Lipnikov, D. Svyatskiy, Y. Vassilevski, Interpolation-free monotone finite volume method for diffusion equations on polygonal meshes, J. Comput. Phys. 228 (3) (2009) 703-716. · Zbl 1158.65083
[16] G. Yuan, Z. Sheng, Monotone finite volume schemes for diffusion equations on polygonal meshes, J. Comput. Phys. 227 (12) (2008) 6288-6312. · Zbl 1147.65069
[17] Z. Sheng, J. Yue, G. Yuan, Monotone finite volume schemes of nonequilibrium radiation diffusion equations on distorted meshes, SIAM J. Sci. Comput. 31 (4) (2009) 2915-2934. · Zbl 1195.65115
[18] S. Wang, G. Yuan, Y. Li, Z. Sheng, A monotone finite volume scheme for advection-diffusion equations on distorted meshes, Int. J. Numer. Meth. Fluids 69 (7) (2012) 1283-1298. · Zbl 1253.76069
[19] Z. Sheng, G. Yuan, A cell-centered nonlinear finite volume scheme preserving fully positiv-ity for diffusion equation, J. Sci. Comput. 68 (2) (2016) 521-545. · Zbl 1371.65114
[20] D. Jia, Z. Sheng, G. Yuan, An extremum-preserving iterative procedure for the imperfect interface problem, Commun. Comput. Phys. 25 (2019) 853-870. · Zbl 1473.65304
[21] D. Li, H. Shui, M. Tang, On the finite difference scheme of two-dimensional parabolic equa-tion in a non-rectangular mesh, J. Numer. Methods Comput. Appl. 1 (1980) 217-224.
[22] D. Shepard, A two-dimensional interpolation function for irregularly-spaced data, in: Pro-ceedings of the 23d ACM National Conference, ACM, New York, NY, USA, (1968), pp. 517-524.
[23] L. Agelas, R. Eymard, R. Herbin, A nine-point finite volume scheme for the simulation of diffusion in heterogeneous media , C. R. Math. Acad. Sci. Paris 347 (11) (2009) 673-676. · Zbl 1166.65051
[24] G. Chen, D. Li, Z. Wan, Difference scheme by integral interpolation method for three dimen-sional diffusion equation, Chinese J. Comput. Phys. 20 (3) (2003) 205-209.
[25] Z. Du, D. Yin, X. Liu, J. Lu, Nonorthogonal hexahedral mesh finite volume difference method for the 3-D diffusion equation, J. Tsinghua Univ. (Sci& Tech) 43 (10) (2003) 1365-1368. · Zbl 1080.65075
[26] D. Yin, An unstructured tetrahedral mesh finite volume difference method for the diffusion equation, J. Numer. Methods Comput. Appl. 2 (2005) 92-100.
[27] X. Lai, Z. Sheng, G. Yuan, A finite volume scheme for three-dimensional diffusion equations, Commun. Comput. Phys. 18 (3) (2015) 650-672. · Zbl 1388.65080
[28] S. Wang, X. Hang, G. Yuan, A pyramid scheme for three-dimensional diffusion equations on polyhedral meshes , J. Comput. Phys. 350 (2017) 590-606. · Zbl 1380.65336
[29] F. Hermeline, Approximation of 2-D and 3-D diffusion operators with variable full tensor coefficients on arbitrary meshes, Comput. Methods Appl. Mech. Eng. 196 (21) (2007) 2497-2526. · Zbl 1173.76362
[30] F. Hermeline, A finite volume method for approximating 3D diffusion operators on general meshes, J. Comput. Phys. 228 (16) (2009) 5763-5786. · Zbl 1168.76340
[31] W. Zhang, M. A. Kobaisi, A two-step finite volume method to discretize heterogeneous and anisotropic pressure equation on general grids, Adv. Water Resour. 108 (2017) doi: 10.1016/j.advwatres.2017.08.008. · doi:10.1016/j.advwatres.2017.08.008
[32] I. V. Kapyrin, A family of monotone methods for the numerical solution of three-dimensional diffusion problems on unstructured tetrahedral meshes, Dokl. Math. 76 (2) (2007) 734-738. · Zbl 1416.65402
[33] A. A. Danilov, Y. V. Vassilevski, A monotone nonlinear finite volume method for diffusion equations on conformal polyhedral meshes, Russ. J. Numer. Anal. Math. Modelling 24 (3) (2009) 207-227. · Zbl 1166.65394
[34] Nikitin, K. .
[35] Vassilevski, Yu, A monotone nonlinear finite volume method for advection-diffusion equations on unstructured polyhedral meshes in 3D, Russ. J. Numer. Anal. Math. Modelling 25 (4) (2010) 335-358. · Zbl 1195.65195
[36] S. Wang, X. Hang, G. Yuan, A positivity-preserving finite volume scheme for diffusion equa-tions on polyhedral meshes, Math. Numer. Sin. 37 (3) (2015) 247-263. · Zbl 1340.76055
[37] S. Wang, X. Hang, G. Yuan, A positivity-preserving pyramid scheme for anisotropic diffu-sion problems on general hexahedral meshes with nonplanar cell faces , J. Comput. Phys. 371 (2018) 152-167. · Zbl 1415.76483
[38] X. Lai, Z. Sheng, G. Yuan, Monotone finite volume scheme for three dimensional diffusion equation on tetrahedral meshes, Commun. Comput. Phys. 21 (1) (2017) 162-181. · Zbl 1388.65081
[39] D. G. Anderson, Iterative procedures for nonlinear integral equations, J. ACM 12 (4) (1965) 547-560. · Zbl 0149.11503
[40] H. R. Fang, Y. Saad, Two classes of multisecant methods for nonlinear acceleration, Numer. Linear Algebra Appl. 16 (3) (2009) 197-221. · Zbl 1224.65134
[41] F. A. Potra, H. Engler, A characterization of the behavior of the Anderson acceleration on linear problems, Linear Algebra and Its Applications 438 (3) (2013) 1002-1011. · Zbl 1263.65036
[42] K. Lipnikov, D. Svyatskiy, Y. Vassilevski, Anderson acceleration for nonlinear finite volume scheme for advection-diffusion problems, SIAM J. Sci. Comput. 35 (2) (2013) A1120-A1136. · Zbl 1266.65181
[43] A. Toth, C. T. Kelley, Convergence analysis for Anderson acceleration, SIAM J. Numer. Anal. 53 (2) (2013) 805-819. · Zbl 1312.65083
[44] X. Blanc, E. Labourasse, A positive scheme for diffusion problems on deformed meshes, ZAMM Z. Angew. Math. Mech. 96 (6) (2016) 660-680.
[45] Q. Zhang, Z. Sheng, G. Yuan, A monotone finite volume scheme for diffusion equations on general non-conforming meshes, Appl. Math. Comput. 311 (2017) 300-313. · Zbl 1426.65160
[46] Coudire, Yves, Vila, Jean-Paul, Villedieu, Philippe, Convergence rate of a finite volume scheme for a two dimensional convection-diffusion problem, Math. Model. Numer. Anal. 33 (3) (1999) 493-516. · Zbl 0937.65116
[47] A. Berman, R. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Academic Press, New York, 1979. · Zbl 0484.15016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.