×

Forecasting by TSK general type-2 fuzzy logic systems optimized with genetic algorithms. (English) Zbl 1390.93480

Summary: Researching the theory and applications of general type-2 fuzzy logic systems (GT2 FLSs) has become a hot orientation in recent years. The permanent-magnetic drive (PMD) affected by uncertainties is an emerging technology. This paper designs a type of Takagi-Sugeno-Kang GT2 FLSs to investigate PMD temperature forecasting problems. Genetic algorithms are used to optimize the parameters of Takagi-Sugeno-Kang GT2 FLSs, according to the asymptotic way. The primary membership functions (MFs) of the antecedent and input measurements of the proposed systems are chosen as the Gaussian-type MFs with uncertain standard deviations, and the consequent parameters are selected as crisp numbers, whereas the secondary MFs (vertical slices) are selected as a triangle type. Noisy data of PMD temperature are used for training and testing the proposed T2 FLS forecasting methods. Numerical simulation studies and convergence analysis illustrate that the proposed GT2 FLSs outperform their type-1 and interval type-2 FLSs.

MSC:

93C42 Fuzzy control/observation systems
90C59 Approximation methods and heuristics in mathematical programming
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] 1 Weigend AS, Gershenfeld NA. Time Series Prediction: Forecasting the Future and Understanding the Past. MA: Addison‐Wesley, Reading; 1994.
[2] 2 Huang J, Korolkiewicz M, Agrawal M, Boland J. Forecasting solar radiation on an hourly time scale using a coupled autoregressive and dynamical system (CARDS) model. {\it Sol Energy}. 2013;87(1):136‐149.
[3] 3 Barbounis TG, Theocharis JB. Locally recurrent neural networks for wind speed prediction using spatial correlation. {\it Inf Sci}. 2007;177(24):5775‐5797.
[4] 4 Khosravi A, Nahavandi S. Load forecasting using interval type‐2 fuzzy logic systems: optimal type reduction. {\it IEEE Trans Ind Inform}. 2014;10(2):1055‐1063.
[5] 5 Chen Y, Wang DZ, Tong SC. Forecasting studies by designing Mamdani interval type‐2 fuzzy logic systems: with the combination of BP algorithms and KM algorithms. {\it Neurocomputing}. 2016;174(part b):1133‐1146. https://doi.org/10.1016/j.neucom.2015.10.032
[6] 6 EI‐Nagar AM, EI‐Bardini M. Simplified interval type‐2 fuzzy logic system based on new type‐reduction. {\it J Intell Fuzzy Syst}. 2014;27(14):1999‐2010. · Zbl 1305.93109
[7] 7 Zhao T, Xiao J. State feedback control of interval type‐2 Takagi‐Sugeno fuzzy systems via interval type‐2 regional switching fuzzy controllers. {\it Int J Syst Sci}. 2015;46(15):2756‐2769. · Zbl 1332.93240
[8] 8 Theodoridis DC, Boutails YS, Christodoulou MA. Direct adaptive neuro‐fuzzy trajectory tracking of uncertain nonlinear systems. {\it Int J Adapt Control Signal Process}. 2012;26(7):660‐688. · Zbl 1250.93075
[9] 9 Kayacan E, Kaynak O. Sliding mode control theory‐based algorithm for online learning in type‐2 fuzzy neural networks: application to velocity control of an electro hydraulic servo system. {\it Int J Adapt Control Signal Process}. 2012;26(7):645‐659. · Zbl 1250.93041
[10] 10 Wang DZ, Chen Y. Study on permanent magnetic drive forecasting by Takagi Sugeno Kang type interval type‐2 fuzzy logic systems. {\it Trans Inst Meas Control}. 2017. https://doi.org/10.1177/0142331216694682
[11] 11 Zhang H, Wang J. State estimation of discrete‐time Takagi‐Sugeno fuzzy systems in a network environment. {\it IEEE Trans Cybern}. 2015;45(8):1525‐1536.
[12] 12 Khosravi A, Nahavandi S, Creighton D, Srinivasan D. Interval type‐2 fuzzy logic systems for load forecasting: a comparative study. {\it IEEE Trans Power Syst}. 2012;27(3):1274‐1282.
[13] 13 Mo H, Wang T. Computing with words in generalized interval type‐2 fuzzy sets. {\it Acta Autom Sin}. 2013;38(5):707‐715. · Zbl 1274.68543
[14] 14 Mendel JM. Uncertain Rule‐Based Fuzzy Logic Systems: Introduction and New Directions. Englewood Cliffs, NJ, USA: Prentice‐Hall; 2001. · Zbl 0978.03019
[15] 15 Liu FL. An efficient centroid type‐reduction strategy for general type‐2 fuzzy logic system. {\it Inf Sci}. 2008;178(1):2224‐2236.
[16] 16 Wagner C, Hagras H. Toward general type‐2 fuzzy logic systems based on zSlices. {\it IEEE Trans Fuzzy Syst}. 2010;18(4):637‐660.
[17] 17 Mendel JM, Liu FL, Zhai DY. Alpha‐plane representation for type‐2 fuzzy sets: theory and applications. {\it IEEE Trans Fuzzy Syst}. 2009;17(5):1189‐1207.
[18] 18 Mendel JM. General type‐2 fuzzy logic systems made simple: a tutorial. {\it IEEE Trans Fuzzy Syst}. 2014;22(5):1162‐1182.
[19] 19 Barkat S, Tlemcani A, Nouri H. Noninteracting adaptive control of PMSM using interval type‐2 fuzzy logic systems. {\it IEEE Trans Fuzzy Syst}. 2011;19(5):925‐936.
[20] 20 Du XY, Ying H, Lin F. Theory of extended fuzzy discrete‐event systems for handling ranges of knowledge uncertainties and subjectivity. {\it IEEE Trans Fuzzy Syst}. 2009;17(2):316‐328.
[21] 21 Mendel JM, John RB. Type‐2 fuzzy sets made simple. {\it IEEE Trans Fuzzy Syst}. 2002;10(2):117‐127.
[22] 22 Klir GJ, Yuan B. Fuzzy Sets and Fuzzy Logic: Theory and Applications. Upper Saddle River, NJ, USA: Prentice‐Hall; 1995. · Zbl 0915.03001
[23] 23 Mendel JM. Type‐2 fuzzy sets and systems: an overview. {\it IEEE Comput Intell Mag}. 2007;2(2):20‐29.
[24] 24 Karnik NN, Mendel JM. Centroid of a type‐2 fuzzy set. {\it Inf Sci}. 2001;132(1):195‐220. · Zbl 0982.03030
[25] 25 Mendel JM. On KM algorithms for solving type‐2 fuzzy set problems. {\it IEEE Trans Fuzzy Syst}. 2013;21(3):426‐446.
[26] 26 Wu DR, Mendel JM. Enhanced Karnik‐Mendel algorithms. {\it IEEE Trans Fuzzy Syst}. 2009;17(4):923‐934.
[27] 27 Hu H, Wang Y, Cai Y. Advantages of the enhanced opposite direction searching algorithm for computing the centroid of an interval type‐2 fuzzy set. {\it Asian J Control}. 2012;14(5):1422‐1430. · Zbl 1303.68121
[28] 28 Liu XW, Mendel JM, Wu DR. Study on enhanced Karnik‐Mendel algorithms: initialization explanations and computation improvements. {\it Inf Sci}. 2012;184(1):75‐91. · Zbl 1239.68073
[29] 29 Holland J. Adaptation in Natural and Artificial Systems. Ann Arbor, MI: University of Michigan Press; 1975. · Zbl 0317.68006
[30] 30 Wu DR, Tan WW. Genetic learning and performance evaluation of interval type‐2 fuzzy logic controllers. {\it Eng Appl Artif Intell}. 2006;19(8):829‐841.
[31] 31 Wu DR, Tan WW. A simplified type‐2 fuzzy logic controller for real‐time control. {\it ISA Trans}. 2006;45(4):503‐516.
[32] 32 Chen S, Chang Y, Pan J. Fuzzy rules interpolation for sparse fuzzy rule‐based systems based on interval type‐2 gaussian fuzzy sets and genetic algorithms. {\it IEEE Trans Fuzzy Syst}. 2013;21(3):412‐425.
[33] 33 Cordon O, Herrera F, Hoffmann F, Magdalena L. Genetic Fuzzy System: Evolutionary Tuning and Learning of Fuzzy Knowledge Bases. Singapore: World Scientific; 2001. · Zbl 1042.68098
[34] 34 Hidalgo D, Melin P, Castillo O. An optimization method for designing type‐2 fuzzy inference systems based on the footprint of uncertainty using genetic algorithms. {\it Expert Syst Appl}. 2012;39(4):4590‐4598.
[35] 35 Khosravi A, Nahavandi S. Effects of type‐reduction algorithms on forecasting accuracy of IT2 FLS models. {\it Appl Soft Comput}. 2014;17(3):32‐38.
[36] 36 Chen Y, Wang DZ, Ning W. Forecasting by interval type‐2 fuzzy logic system optimized with QPSO algorithm. {\it J Northeast Univ}. 2016;37(10):1379‐1382.
[37] 37 Wei F, Jun S, Ping XZ, Xu WB. Convergence analysis of quantum‐behaved particle swarm optimization algorithm and study on its control parameter. {\it Acta Phys Sin}. 2010;59(6):3686‐3694. · Zbl 1224.90219
[38] 38 Zhai DY, Hao MS, Mendel JM. Universal image noise removal filter based on type‐2 fuzzy logic system and QPSO. {\it Int J Uncertain Fuzziness Knowl‐Based Syst}. 2012;20(supp02):207‐232.
[39] 39 Hsu CH, Juang CF. Evolutionary robot wall‐following control using type‐2 fuzzy controller with species‐de‐activated continuous ACO. {\it IEEE Trans Fuzzy Syst}. 2013;21(1):100‐112.
[40] 40 Juang CF, Chang PH. Designing fuzzy‐rule‐based systems using continuous ant‐colony optimization. {\it IEEE Trans Fuzzy Syst}. 2010;18(1):138‐149.
[41] 41 Sanchez MA, Castillo O, Castro JR. Generalized type‐2 fuzzy systems for controlling a mobile robot and a performance comparison with interval type‐2 and type‐1 fuzzy systems. {\it Expert Syst Appl}. 2015;42(14):5904‐5914.
[42] 42 Gonzalez C, Castro JR, Melin P, Castillo O. An edge detection method based on generalized type‐2 fuzzy logic. {\it Soft Comput}. 2016;20(2):773‐784.
[43] 43 Melin P, Gonzalez CI, Castro JR, Mendoza O, Castillo O. Edge‐detection method for image processing based on generalized type‐2 fuzzy logic. {\it IEEE Trans Fuzzy Syst}. 2014;22(6):1515‐1525.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.