×

Patient-specific computer modeling of blood flow in cerebral arteries with aneurysm and stent. (English) Zbl 1311.76157

Summary: We present the special arterial fluid mechanics techniques we have developed for patient-specific computer modeling of blood flow in cerebral arteries with aneurysm and stent. These techniques are used in conjunction with the core computational technique, which is the space-time version of the variational multiscale (VMS) method and is called “DST/SST-VMST.” The special techniques include using NURBS for the spatial representation of the surface over which the stent mesh is built, mesh generation techniques for both the finite- and zero-thickness representations of the stent, techniques for generating refined layers of mesh near the arterial and stent surfaces, and models for representing double stent. We compute the unsteady flow patterns in the aneurysm and investigate how those patterns are influenced by the presence of single and double stents. We also compare the flow patterns obtained with the finite- and zero-thickness representations of the stent.

MSC:

76Z05 Physiological flows
92C35 Physiological flow
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2004) Influence of wall elasticity on image-based blood flow simulation. Jpn Soc Mech Eng J Ser A 70: 1224–1231 (in Japanese)
[2] Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2006) Computer modeling of cardiovascular fluid–structure interactions with the Deforming-Spatial-Domain/Stabilized Space–Time formulation. Comput Methods Appl Mech Eng 195: 1885–1895. doi: 10.1016/j.cma.2005.05.050 · Zbl 1178.76241
[3] Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2006) Fluid–structure interaction modeling of aneurysmal conditions with high and normal blood pressures. Comput Mech 38: 482–490. doi: 10.1007/s00466-006-0065-6 · Zbl 1160.76061
[4] Bazilevs Y, Calo VM, Zhang Y, Hughes TJR (2006) Isogeometric fluid–structure interaction analysis with applications to arterial blood flow. Comput Mech 38: 310–322 · Zbl 1161.74020
[5] Tezduyar TE, Sathe S, Cragin T, Nanna B, Conklin BS, Pausewang J, Schwaab M (2007) Modeling of fluid–structure interactions with the space–time finite elements: arterial fluid mechanics. Int J Numer Methods Fluids 54: 901–922. doi: 10.1002/fld.1443 · Zbl 1276.76043
[6] Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2007) Influence of wall elasticity in patient-specific hemodynamic simulations. Comput Fluids 36: 160–168. doi: 10.1016/j.compluid.2005.07.014 · Zbl 1113.76105
[7] Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2007) Numerical investigation of the effect of hypertensive blood pressure on cerebral aneurysm–dependence of the effect on the aneurysm shape. Int J Numer Methods Fluids 54: 995–1009. doi: 10.1002/fld.1497 · Zbl 1317.76107
[8] Bazilevs Y, Calo VM, Tezduyar TE, Hughes TJR (2007) YZ{\(\beta\)} discontinuity-capturing for advection-dominated processes with application to arterial drug delivery. Int J Numer Methods Fluids 54: 593–608. doi: 10.1002/fld.1484 · Zbl 1207.76049
[9] Tezduyar TE, Sathe S, Schwaab M, Conklin BS (2008) Arterial fluid mechanics modeling with the stabilized space–time fluid–structure interaction technique. Int J Numer Methods Fluids 57: 601–629. doi: 10.1002/fld.1633 · Zbl 1230.76054
[10] Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2008) Fluid–structure interaction modeling of a patient-specific cerebral aneurysm: influence of structural modeling. Comput Mech 43: 151–159. doi: 10.1007/s00466-008-0325-8 · Zbl 1169.74032
[11] Bazilevs Y, Calo VM, Hughes TJR, Zhang Y (2008) Isogeometric fluid–structure interaction: theory, algorithms, and computations. Comput Mech 43: 3–37 · Zbl 1169.74015
[12] Isaksen JG, Bazilevs Y, Kvamsdal T, Zhang Y, Kaspersen JH, Waterloo K, Romner B, Ingebrigtsen T (2008) Determination of wall tension in cerebral artery aneurysms by numerical simulation. Stroke 39: 3172–3178
[13] Maynard JP, Nithiarasu P (2008) A 1D arterial blood flow model incorporating ventricular pressure, aortic valve and regional coronary flow using the locally conservative Galerkin (LCG) method. Commun Numer Methods Eng 24: 367–417 · Zbl 1137.92009
[14] Tezduyar TE, Schwaab M, Sathe S (2009) Sequentially-Coupled Arterial Fluid–Structure Interaction (SCAFSI) technique. Comput Methods Appl Mech Eng 198: 3524–3533. doi: 10.1016/j.cma.2008.05.024 · Zbl 1229.74100
[15] Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2009) Fluid–structure interaction modeling of blood flow and cerebral aneurysm: significance of artery and aneurysm shapes. Comput Methods Appl Mech Eng 198: 3613–3621. doi: 10.1016/j.cma.2008.08.020 · Zbl 1229.74101
[16] Bazilevs Y, Gohean JR, Hughes TJR, Moser RD, Zhang Y (2009) Patient-specific isogeometric fluid–structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device. Comput Methods Appl Mech Eng 198: 3534–3550 · Zbl 1229.74096
[17] Bazilevs Y, Hsu M-C, Benson D, Sankaran S, Marsden A (2009) Computational fluid–structure interaction: methods and application to a total cavopulmonary connection. Comput Mech 45: 77–89 · Zbl 1398.92056
[18] Takizawa K, Christopher J, Tezduyar TE, Sathe S (2010) Space–time finite element computation of arterial fluid–structure interactions with patient-specific data. Int J Numer Methods Biomed Eng 26: 101–116. doi: 10.1002/cnm.1241 · Zbl 1180.92023
[19] Tezduyar TE, Takizawa K, Moorman C, Wright S, Christopher J (2010) Multiscale sequentially-coupled arterial FSI technique. Comput Mech 46: 17–29. doi: 10.1007/s00466-009-0423-2 · Zbl 1261.92010
[20] Takizawa K, Moorman C, Wright S, Christopher J, Tezduyar TE (2010) Wall shear stress calculations in space–time finite element computation of arterial fluid–structure interactions. Comput Mech 46: 31–41. doi: 10.1007/s00466-009-0425-0 · Zbl 1301.92019
[21] Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2010) Influence of wall thickness on fluid–structure interaction computations of cerebral aneurysms. Int J Numer Methods Biomed Eng 26: 336–347. doi: 10.1002/cnm.1289 · Zbl 1183.92050
[22] Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2010) Role of 0D peripheral vasculature model in fluid–structure interaction modeling of aneurysms. Comput Mech 46: 43–52. doi: 10.1007/s00466-009-0439-7 · Zbl 1301.92020
[23] Bazilevs Y, Hsu M-C, Zhang Y, Wang W, Liang X, Kvamsdal T, Brekken R, Isaksen J (2010) A fully-coupled fluid–structure interaction simulation of cerebral aneurysms. Comput Mech 46: 3–16 · Zbl 1301.92014
[24] Sugiyama K, Ii S, Takeuchi S, Takagi S, Matsumoto Y (2010) Full Eulerian simulations of biconcave neo-Hookean particles in a Poiseuille flow. Comput Mech 46: 147–157 · Zbl 1301.76078
[25] Bazilevs Y, Hsu M-C, Zhang Y, Wang W, Kvamsdal T, Hentschel S, Isaksen J (2010) Computational fluid–structure interaction: methods and application to cerebral aneurysms. Biomech Model Mechanobiol 9: 481–498
[26] Bazilevs Y, del Alamo JC, Humphrey JD (2010) From imaging to prediction: emerging non-invasive methods in pediatric cardiology. Progr Pediatr Cardiol 30: 81–89
[27] Mut F, Aubry R, Lohner R, Cebral JR (2010) Fast numerical solutions of patient-specific blood flows in 3D arterial systems. Int J Numer Methods Biomed Eng 26: 73–85 · Zbl 1180.92022
[28] Bevan RLT, Nithiarasu P, Loon RV, Sazanov I, Luckraz H, Garnham A (2010) Application of a locally conservative Galerkin (LCG) method for modelling blood flow through a patient-specific carotid bifurcation. Int J Numer Methods Fluids (published online). doi: 10.1002/fld.2313 · Zbl 1203.92034
[29] Chitra K, Sundararajan T, Vengadesan S, Nithiarasu P (2010) Non-Newtonian blood flow study in a model cavopulmonary vascular system. Int J Numer Methods Fluids (published online). doi: 10.1002/fld.2256 · Zbl 1221.92030
[30] Cebral JR, Mut F, Sforza D, Lohner R, Scrivano E, Lylyk P, Putnam C (2010) Clinical application of image-based cfd for cerebral aneurysms. Int J Numer Methods Biomed Eng (published online) doi: 10.1002/cnm.1373 · Zbl 1219.92035
[31] Takizawa K, Moorman C, Wright S, Purdue J, McPhail T, Chen PR, Warren J, Tezduyar TE (2011) Patient-specific arterial fluid–structure interaction modeling of cerebral aneurysms. Int J Numer Methods Fluids 65: 308–323. doi: 10.1002/fld.2360 · Zbl 1203.92044
[32] Manguoglu M, Takizawa K, Sameh AH, Tezduyar TE (2011) Nested and parallel sparse algorithms for arterial fluid mechanics computations with boundary layer mesh refinement. Int J Numer Methods Fluids 65: 135–149. doi: 10.1002/fld.2415 · Zbl 1427.76285
[33] Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2011) Influencing factors in image-based fluid–structure interaction computation of cerebral aneurysms. Int J Numer Methods Fluids 65: 324–340. doi: 10.1002/fld.2448 · Zbl 1203.92045
[34] Tezduyar TE, Takizawa K, Brummer T, Chen PR (2011) Space–time fluid–structure interaction modeling of patient-specific cerebral aneurysms. Int J Numer Methods Biomed Eng 27: 1665–1710. doi: 10.1002/cnm.1433 · Zbl 1244.92036
[35] Hsu M-C, Bazilevs Y (2011) Blood vessel tissue prestress modeling for vascular fluid–structure interaction simulations. Finite Elements Anal Design 47: 593–599
[36] Takizawa K, Brummer T, Tezduyar TE, Chen PR (2012) A comparative study based on patient-specific fluid–structure interaction modeling of cerebral aneurysms. J Appl Mech 79 010908. doi: 10.1115/1.4005071 · Zbl 1244.92036
[37] Manguoglu M, Takizawa K, Sameh AH, Tezduyar TE (2011) A parallel sparse algorithm targeting arterial fluid mechanics computations. Comput Mech 48: 377–384. doi: 10.1007/s00466-011-0619-0 · Zbl 1398.76115
[38] Takizawa K, Bazilevs Y, Tezduyar TE (2012) Space–time and ALE-VMS techniques for patient-specific cardiovascular fluid–structure interaction modeling. Arch Comput Methods Eng 19: 171–225. doi: 10.1007/s11831-012-9071-3 · Zbl 1354.92023
[39] Hughes TJR, Liu WK, Zimmermann TK (1981) Lagrangian–Eulerian finite element formulation for incompressible viscous flows. Comput Methods Appl Mech Eng 29: 329–349 · Zbl 0482.76039
[40] Tezduyar T, Aliabadi S, Behr M, Johnson A, Mittal S (1993) Parallel finite-element computation of 3D flows. Computer 26: 27–36. doi: 10.1109/2.237441 · Zbl 05090697
[41] Behr M, Johnson A, Kennedy J, Mittal S, Tezduyar T (1993) Computation of incompressible flows with implicit finite element implementations on the Connection Machine. Comput Methods Appl Mech Eng 108: 99–118. doi: 10.1016/0045-7825(93)90155-Q · Zbl 0784.76046
[42] Tezduyar TE, Aliabadi SK, Behr M, Mittal S (1994) Massively parallel finite element simulation of compressible and incompressible flows. Comput Methods Appl Mech Eng 119: 157–177. doi: 10.1016/0045-7825(94)00082-4 · Zbl 0848.76040
[43] Mittal S, Tezduyar TE (1994) Massively parallel finite element computation of incompressible flows involving fluid-body interactions. Comput Methods Appl Mech Eng 112: 253–282. doi: 10.1016/0045-7825(94)90029-9 · Zbl 0846.76048
[44] Mittal S, Tezduyar TE (1995) Parallel finite element simulation of 3D incompressible flows–fluid–structure interactions. Int J Numer Methods Fluids 21: 933–953. doi: 10.1002/fld.1650211011 · Zbl 0873.76047
[45] Aliabadi SK, Tezduyar TE (1995) Parallel fluid dynamics computations in aerospace applications. Int J Numer Methods Fluids 21: 783–805. doi: 10.1002/fld.1650211003 · Zbl 0862.76033
[46] Tezduyar T, Aliabadi S, Behr M, Johnson A, Kalro V, Litke M (1996) Flow simulation and high performance computing. Comput Mech 18: 397–412. doi: 10.1007/BF00350249 · Zbl 0893.76046
[47] Johnson AA, Tezduyar TE (1997) Parallel computation of incompressible flows with complex geometries. Int J Numer Methods Fluids 24: 1321–1340. doi: 10.1002/(SICI)1097-0363(199706)24:12<1321::AID-FLD562>3.3.CO;2-C · Zbl 0882.76044
[48] Johnson AA, Tezduyar TE (1999) Advanced mesh generation and update methods for 3D flow simulations. Comput Mech 23: 130–143. doi: 10.1007/s004660050393 · Zbl 0949.76049
[49] Behr M, Tezduyar T (1999) The Shear-Slip Mesh Update Method. Comput Methods Appl Mech Eng 174: 261–274. doi: 10.1016/S0045-7825(98)00299-0 · Zbl 0959.76037
[50] Kalro V, Tezduyar TE (2000) A parallel 3D computational method for fluid–structure interactions in parachute systems. Comput Methods Appl Mech Eng 190: 321–332. doi: 10.1016/S0045-7825(00)00204-8 · Zbl 0993.76044
[51] Stein K, Benney R, Kalro V, Tezduyar TE, Leonard J, Accorsi M (2000) Parachute fluid–structure interactions: 3-D computation. Comput Methods Appl Mech Eng 190: 373–386. doi: 10.1016/S0045-7825(00)00208-5 · Zbl 0973.76055
[52] Tezduyar TE (2001) Finite element methods for flow problems with moving boundaries and interfaces. Arch Comput Methods Eng 8: 83–130. doi: 10.1007/BF02897870 · Zbl 1039.76037
[53] Tezduyar T, Osawa Y (2001) Fluid–structure interactions of a parachute crossing the far wake of an aircraft. Comput Methods Appl Mech Eng 191: 717–726. doi: 10.1016/S0045-7825(01)00311-5 · Zbl 1113.76407
[54] Stein K, Benney R, Tezduyar T, Potvin J (2001) Fluid–structure interactions of a cross parachute: numerical simulation. Comput Methods Appl Mech Eng 191: 673–687. doi: 10.1016/S0045-7825(01)00312-7 · Zbl 0999.76085
[55] Ohayon R (2001) Reduced symmetric models for modal analysis of internal structural-acoustic and hydroelastic-sloshing systems. Comput Methods Appl Mech Eng 190: 3009–3019 · Zbl 0971.74032
[56] Behr M, Tezduyar T (2001) Shear-slip mesh update in 3D computation of complex flow problems with rotating mechanical components. Comput Methods Appl Mech Eng 190: 3189–3200. doi: 10.1016/S0045-7825(00)00388-1 · Zbl 1012.76042
[57] Stein K, Tezduyar T, Benney R (2003) Mesh moving techniques for fluid–structure interactions with large displacements. J Appl Mech 70: 58–63. doi: 10.1115/1.1530635 · Zbl 1110.74689
[58] Stein K, Tezduyar TE, Benney R (2004) Automatic mesh update with the solid-extension mesh moving technique. Comput Methods Appl Mech Eng 193: 2019–2032. doi: 10.1016/j.cma.2003.12.046 · Zbl 1067.74587
[59] van Brummelen EH, de Borst R (2005) On the nonnormality of subiteration for a fluid-structure interaction problem. SIAM J Sci Comput 27: 599–621 · Zbl 1136.65334
[60] Tezduyar TE, Sathe S, Keedy R, Stein K (2006) Space–time finite element techniques for computation of fluid–structure interactions. Comput Methods Appl Mech Eng 195: 2002–2027. doi: 10.1016/j.cma.2004.09.014 · Zbl 1118.74052
[61] Tezduyar TE, Sathe S, Stein K (2006) Solution techniques for the fully-discretized equations in computation of fluid–structure interactions with the space–time formulations. Comput Methods Appl Mech Eng 195: 5743–5753. doi: 10.1016/j.cma.2005.08.023 · Zbl 1123.76035
[62] Tezduyar TE (2007) Finite elements in fluids: stabilized formulations and moving boundaries and interfaces. Comput Fluids 36: 191–206. doi: 10.1016/j.compfluid.2005.02.011 · Zbl 1177.76202
[63] Brenk M, Bungartz H-J, Mehl M, Neckel T (2006) Fluid–structure interaction on Cartesian grids: flow simulation and coupling environment. In: Bungartz H-J, Schafer M (eds) Fluid–structure interaction, vol 53 of lecture notes in computational science and engineering. Springer, pp 233–269 · Zbl 1323.76047
[64] Lohner R, Cebral JR, Yang C, Baum JD, Mestreau EL, Soto O (2006) Extending the range of applicability of the loose coupling approach for FSI simulations. In: Bungartz H-J, Schafer M (eds) Fluid–structure interaction, vol 53 of lecture notes in computational science and engineering. Springer, pp 82–100 · Zbl 1323.74091
[65] Bletzinger K-U, Wuchner R, Kupzok A (2006) Algorithmic treatment of shells and free form-membranes in FSI. In: Bungartz H-J, Schafer M (eds) Fluid–structure interaction vol 53 of lecture notes in computational science and engineering. Springer, pp 336–355 · Zbl 1323.74078
[66] Sawada T, Hisada T (2007) Fluid–structure interaction analysis of the two dimensional flag-in-wind problem by an interface tracking ALE finite element method. Comput Fluids 36: 136–146 · Zbl 1181.76099
[67] Tezduyar TE, Sathe S (2007) Modeling of fluid–structure interactions with the space–time finite elements: solution techniques. Int J Numer Methods Fluids 54: 855–900. doi: 10.1002/fld.1430 · Zbl 1144.74044
[68] Takizawa K, Yabe T, Tsugawa Y, Tezduyar TE, Mizoe H (2007) Computation of free–surface flows and fluid–object interactions with the CIP method based on adaptive meshless Soroban grids. Comput Mech 40: 167–183. doi: 10.1007/s00466-006-0093-2 · Zbl 1177.76300
[69] Takizawa K, Tanizawa K, Yabe T, Tezduyar TE (2007) Ship hydrodynamics computations with the CIP method based on adaptive Soroban grids. Int J Numer Methods Fluids 54: 1011–1019. doi: 10.1002/fld.1466 · Zbl 1375.76153
[70] Yabe T, Takizawa K, Tezduyar TE, Im H-N (2007) Computation of fluid–solid and fluid–fluid interfaces with the CIP method based on adaptive Soroban grids–an overview. Int J Numer Methods Fluids 54: 841–853. doi: 10.1002/fld.1473 · Zbl 1375.76154
[71] Manguoglu M, Sameh AH, Tezduyar TE, Sathe S (2008) A nested iterative scheme for computation of incompressible flows in long domains. Comput Mech 43: 73–80. doi: 10.1007/s00466-008-0276-0 · Zbl 1279.76024
[72] Tezduyar TE, Sathe S, Pausewang J, Schwaab M, Christopher J, Crabtree J (2008) Interface projection techniques for fluid–structure interaction modeling with moving-mesh methods. Comput Mech 43: 39–49. doi: 10.1007/s00466-008-0261-7 · Zbl 1310.74049
[73] Tezduyar TE, Sathe S, Schwaab M, Pausewang J, Christopher J, Crabtree J (2008) Fluid–structure interaction modeling of ringsail parachutes. Comput Mech 43: 133–142. doi: 10.1007/s00466-008-0260-8 · Zbl 1209.74022
[74] Sathe S, Tezduyar TE (2008) Modeling of fluid–structure interactions with the space–time finite elements: contact problems. Comput Mech 43: 51–60. doi: 10.1007/s00466-008-0299-6 · Zbl 1297.74129
[75] Dettmer WG, Peric D (2008) On the coupling between fluid flow and mesh motion in the modelling of fluid–structure interaction. Comput Mech 43: 81–90 · Zbl 1235.74272
[76] Bazilevs Y, Hughes TJR (2008) NURBS-based isogeometric analysis for the computation of flows about rotating components. Comput Mech 43: 143–150 · Zbl 1171.76043
[77] Sternel DC, Schaefer M, Heck M, Yigit S (2008) Efficiency and accuracy of fluid–structure interaction simulations using an implicit partitioned approach. Comput Mech 43: 103–113 · Zbl 1234.74053
[78] Mehl M, Brenk M, Bungartz H-J, Daubner K, Muntean IL, Neckel T (2008) An Eulerian approach for partitioned fluid–structure simulations on Cartesian grids. Comput Mech 43: 115–124 · Zbl 1228.74024
[79] Idelsohn SR, Marti J, Souto-Iglesias A, Onate E (2008) Interaction between an elastic structure and free-surface flows: experimental versus numerical comparisons using the PFEM. Comput Mech 43: 125–132 · Zbl 1177.74140
[80] Idelsohn SR, Marti J, Limache A, Onate E (2008) Unified Lagrangian formulation for elastic solids and incompressible fluids: application to fluid–structure interaction problems via the PFEM. Comput Methods Appl Mech Eng 197: 1762–1776 · Zbl 1194.74415
[81] Manguoglu M, Sameh AH, Saied F, Tezduyar TE, Sathe S (2009) Preconditioning techniques for nonsymmetric linear systems in computation of incompressible flows. J Appl Mech 76: 021204. doi: 10.1115/1.3059576
[82] Idelsohn SR, Pin FD, Rossi R, Onate E (2009) Fluid-structure interaction problems with strong added-mass effect. Int J Numer Methods Eng 80: 1261–1294 · Zbl 1183.74059
[83] Manguoglu M, Takizawa K, Sameh AH, Tezduyar TE (2010) Solution of linear systems in arterial fluid mechanics computations with boundary layer mesh refinement. Comput Mech 46: 83–89. doi: 10.1007/s00466-009-0426-z · Zbl 1301.76087
[84] Calderer R, Masud A (2010) A multiscale stabilized ALE formulation for incompressible flows with moving boundaries. Comput Mech 46: 185–197 · Zbl 1301.76057
[85] Tezduyar TE, Takizawa K, Moorman C, Wright S, Christopher J (2010) Space–time finite element computation of complex fluid–structure interactions. Int J Numer Methods Fluids 64: 1201–1218. doi: 10.1002/fld.2221 · Zbl 1427.76148
[86] Kiendl J, Bazilevs Y, Hsu M-C, Wüchner R, Bletzinger K-U (2010) The bending strip method for isogeometric analysis of Kirchhoff–Love shell structures comprised of multiple patches. Comput Methods Appl Mech Eng 199: 2403–2416 · Zbl 1231.74482
[87] Ryzhakov PB, Rossi R, Idelsohn SR, Onate E (2010) A1 monolithic Lagrangian approach for fluid–structure interaction problems. Comput Mech 46: 883–899 · Zbl 1344.74016
[88] Bazilevs Y, Hsu M-C, Akkerman I, Wright S, Takizawa K, Henicke B, Spielman T, Tezduyar TE (2011) 3D simulation of wind turbine rotors at full scale. Part I: geometry modeling and aerodynamics. Int J Numer Methods Fluids 65: 207–235. doi: 10.1002/fld.2400 · Zbl 1428.76086
[89] Bazilevs Y, Hsu M-C, Kiendl J, Wüchner R, Bletzinger K-U (2011) 3D simulation of wind turbine rotors at full scale. Part II: fluid–structure interaction modeling with composite blades. Int J Numer Methods Fluids 65: 236–253 · Zbl 1428.76087
[90] Takizawa K, Moorman C, Wright S, Spielman T, Tezduyar TE (2011) Fluid–structure interaction modeling and performance analysis of the Orion spacecraft parachutes. Int J Numer Methods Fluids 65: 271–285. doi: 10.1002/fld.2348 · Zbl 1428.76011
[91] Takizawa K, Wright S, Moorman C, Tezduyar TE (2011) Fluid–structure interaction modeling of parachute clusters. Int J Numer Methods Fluids 65: 286–307. doi: 10.1002/fld.2359 · Zbl 1426.76312
[92] Takizawa K, Tezduyar TE (2011) Multiscale space–time fluid–structure interaction techniques. Comput Mech 48: 247–267. doi: 10.1007/s00466-011-0571-z · Zbl 1398.76128
[93] Takizawa K, Henicke B, Tezduyar TE, Hsu M-C, Bazilevs Y (2011) Stabilized space–time computation of wind-turbine rotor aerodynamics. Comput Mech 48: 333–344. doi: 10.1007/s00466-011-0589-2 · Zbl 1398.76127
[94] Takizawa K, Spielman T, Tezduyar TE (2011) Space–time FSI modeling and dynamical analysis of spacecraft parachutes and parachute clusters. Comput Mech 48: 345–364. doi: 10.1007/s00466-011-0590-9 · Zbl 1398.74095
[95] Takizawa K, Spielman T, Moorman C, Tezduyar TE (2012) Fluid–structure interaction modeling of spacecraft parachutes for simulation-based design. J Appl Mech 79: 010907. doi: 10.1115/1.4005070
[96] Takizawa K, Henicke B, Puntel A, Spielman T, Tezduyar TE (2012) Space–time computational techniques for the aerodynamics of flapping wings. J Appl Mech 79: 010903. doi: 10.1115/1.4005073 · Zbl 1286.76179
[97] Takizawa K, Henicke B, Montes D, Tezduyar TE, Hsu M-C, Bazilevs Y (2011) Numerical-performance studies for the stabilized space–time computation of wind-turbine rotor aerodynamics. Comput Mech 48: 647–657. doi: 10.1007/s00466-011-0614-5 · Zbl 1334.74032
[98] Sawada T, Tezuka A (2011) LLM and X-FEM based interface modeling of fluid–thin structure interactions on a non-interface-fitted mesh. Comput Mech 48: 319–332. doi: 10.1007/s00466-011-0600-y · Zbl 1398.74090
[99] Onate E, Celigueta MA, Idelsohn SR, Salazar F, Suarez B (2011) Possibilities of the particle finite element method for fluid–soil–structure interaction problems. Comput Mech 48: 307–318. doi: 10.1007/s00466-011-0617-2 · Zbl 1398.76120
[100] Takase S, Kashiyama K, Tanaka S, Tezduyar TE (2011) Space–time SUPG finite element computation of shallow-water flows with moving shorelines. Comput Mech 48: 293–306. doi: 10.1007/s00466-011-0618-1 · Zbl 1398.76126
[101] Nagaoka S, Nakabayashi Y, Yagawa G, Kim YJ (2011) Accurate fluid–structure interaction computations using elements without mid-side nodes. Comput Mech 48: 269–276. doi: 10.1007/s00466-011-0620-7 · Zbl 1398.76119
[102] Takizawa K, Tezduyar TE (2012) Computational methods for parachute fluid–structure interactions. Arch Comput Methods Eng 19: 25–169. doi: 10.1007/s11831-012-9070-4 · Zbl 1354.76113
[103] Takizawa K, Tezduyar TE (2012) Space–time fluid–structure interaction methods. Math Models Methods Appl Sci. doi: 10.1142/S0218202512300013 · Zbl 1248.76118
[104] Takizawa K, Henicke B, Puntel A, Kostov N, Tezduyar TE (2012) Space–time techniques for computational aerodynamics modeling of flapping wings of an actual locust. Comput Mech. doi: 10.1007/s00466-012-0759-x · Zbl 1286.76179
[105] Takizawa K, Kostov N, Puntel A, Henicke B, Tezduyar TE (2012) Space–time computational analysis of bio-inspired flapping-wing aerodynamics of a micro aerial vehicle. Comput Mech. doi: 10.1007/s00466-012-0758-y · Zbl 1286.76180
[106] Tezduyar TE (1992) Stabilized finite element formulations for incompressible flow computations. Adv Appl Mech 28: 1–44. doi: 10.1016/S0065-2156(08)70153-4 · Zbl 0747.76069
[107] Tezduyar TE, Behr M, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces–the deforming-spatial-domain/space–time procedure: I. The concept and the preliminary numerical tests. Comput Methods Appl Mech Eng 94: 339–351. doi: 10.1016/0045-7825(92)90059-S · Zbl 0745.76044
[108] Tezduyar TE, Behr M, Mittal S, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces–the deforming-spatial-domain/space–time procedure: II\(\sim\)Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders. Comput Methods Appl Mech Eng 94: 353–371. doi: 10.1016/0045-7825(92)90060-W · Zbl 0745.76045
[109] Tezduyar TE (2003) Computation of moving boundaries and interfaces and stabilization parameters. Int J Numer Methods Fluids 43: 555–575. doi: 10.1002/fld.505 · Zbl 1032.76605
[110] Brooks AN, Hughes TJR (1982) Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput Methods Appl Mech Eng 32: 199–259 · Zbl 0497.76041
[111] Tezduyar TE, Mittal S, Ray SE, Shih R (1992) Incompressible flow computations with stabilized bilinear and linear equal-order-interpolation velocity-pressure elements. Comput Methods Appl Mech Eng 95: 221–242. doi: 10.1016/0045-7825(92)90141-6 · Zbl 0756.76048
[112] Tezduyar TE, Cragin T, Sathe S, Nanna B (2007) FSI computations in arterial fluid mechanics with estimated zero-pressure arterial geometry. In: Onate E, Garcia , Spain · Zbl 1276.76043
[113] Tezduyar TE, Takizawa K, Christopher J (2009) Multiscale Sequentially-Coupled Arterial Fluid–Structure Interaction (SCAFSI) technique. In: Hartmann S, Meister A, Schaefer M, Turek S (eds) International workshop on fluid–structure interaction–theory, numerics and applications. Kassel University Press, pp 231–252, ISBN 978-3-89958-666-4
[114] Hughes TJR (1995) Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles, and the origins of stabilized methods. Comput Methods Appl Mech Eng 127: 387–401 · Zbl 0866.76044
[115] Hughes TJR, Oberai AA, Mazzei L (2001) Large eddy simulation of turbulent channel flows by the variational multiscale method. Phys Fluids 13: 1784–1799 · Zbl 1184.76237
[116] Bazilevs Y, Calo VM, Cottrell JA, Hughes TJR, Reali A, Scovazzi G (2007) Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows. Comput Methods Appl Mech Eng 197: 173–201 · Zbl 1169.76352
[117] Bazilevs Y, Akkerman I (2010) Large eddy simulation of turbulent Taylor–Couette flow using isogeometric analysis and the residual–based variational multiscale method. J Comput Phys 229: 3402–3414 · Zbl 1290.76037
[118] Rhee K, Han MH, Cha SH, Khang G (2001) The changes of flow characteristics caused by a stent in fusiform aneurysm models. In: Engineering in Medicine and Biology Society, 2001. Proceedings of the 23rd annual international conference of the IEEE, vol 1, pp 86–88. doi: 10.1109/IEMBS.2001.1018852
[119] Jou L-D, Mawad ME (2011) Hemodynamic effect of neuroform stent on intimal hyperplasia and thrombus formation in a carotid aneurysm. Med Eng Phys 33: 573–580. doi: 10.1016/j.medengphy.2010.12.013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.