×

Actions of finitely generated groups on \(\mathbb{R}\)-trees. (English) Zbl 1187.20020

Summary: We study actions of finitely generated groups on \(\mathbb{R}\)-trees under some stability hypotheses. We prove that either the group splits over some controlled subgroup (fixing an arc in particular), or the action can be obtained by gluing together actions of simple types: actions on simplicial trees, actions on lines, and actions coming from measured foliations on 2-orbifolds. This extends results by Sela and Rips-Sela. However, their results are misstated, and we give a counterexample to their statements.
The proof relies on an extended version of Scott’s lemma of independent interest. This statement claims that if a group \(G\) is a direct limit of groups having suitably compatible splittings, then \(G\) splits.

MSC:

20E08 Groups acting on trees
20F65 Geometric group theory
20E06 Free products of groups, free products with amalgamation, Higman-Neumann-Neumann extensions, and generalizations

Software:

MAGNUS
PDFBibTeX XMLCite
Full Text: DOI arXiv Numdam EuDML

References:

[1] Alibegovic, Emina, Makanin-Razborov diagrams for limit groups (2004) · Zbl 1185.20034
[2] Belegradek, Igor; Szczepanski, Andrzej, Endomorphisms of relatively hyperbolic groups (2005) · Zbl 1190.20034
[3] Bestvina, M.; Feighn, M., Outer Limits
[4] Bestvina, M.; Feighn, M., Bounding the complexity of simplicial group actions on trees, Invent. Math., 103, 3, 449-469 (1991) · Zbl 0724.20019 · doi:10.1007/BF01239522
[5] Bestvina, M.; Feighn, M., A combination theorem for negatively curved groups, J. Differential Geom., 35, 1, 85-101 (1992) · Zbl 0724.57029
[6] Bestvina, M.; Feighn, M., Stable actions of groups on real trees, Invent. Math., 121, 2, 287-321 (1995) · Zbl 0837.20047 · doi:10.1007/BF01884300
[7] Chiswell, Ian, Introduction to \(\Lambda \)-trees (2001) · Zbl 1004.20014
[8] Cohen, M. M.; Lustig, M., Very small group actions on \(\mathbb{R} \)-trees and Dehn twist automorphisms, Topology, 34, 3, 575-617 (1995) · Zbl 0844.20018 · doi:10.1016/0040-9383(94)00038-M
[9] Cooperative, Group Theory, MAGNUS, Computational package for exploring infinite groups, version 4.1.3 beta (2005)
[10] Culler, M.; Morgan, J. W., Group actions on \(\mathbb{R} \)-trees, Proc. London Math. Soc. (3), 55, 3, 571-604 (1987) · Zbl 0658.20021 · doi:10.1112/plms/s3-55.3.571
[11] Delzant, Thomas, Sur l’accessibilité acylindrique des groupes de présentation finie, Ann. Inst. Fourier (Grenoble), 49, 4, 1215-1224 (1999) · Zbl 0999.20017 · doi:10.5802/aif.1714
[12] Druţu, Cornelia; Sapir, Mark, Groups acting on tree-graded spaces and splittings of relatively hyperbolic group (2006) · Zbl 1138.20024
[13] Dunwoody, M. J., The Epstein birthday schrift, 139-158 (electronic) (1998) · Zbl 0927.20013
[14] Gaboriau, D.; Levitt, G.; Paulin, F., Pseudogroups of isometries of \(\mathbb{R}\) and Rips’ theorem on free actions on \(\mathbb{R} \)-trees, Israel J. Math., 87, 1-3, 403-428 (1994) · Zbl 0824.57001 · doi:10.1007/BF02773004
[15] Gaboriau, D.; Levitt, G.; Paulin, F., Pseudogroups of isometries of \(\mathbb{R} \): reconstruction of free actions on \(\mathbb{R} \)-trees, Ergodic Theory Dynam. Systems, 15, 4, 633-652 (1995) · Zbl 0839.58022 · doi:10.1017/S0143385700008580
[16] Groves, Daniel, Limit groups for relatively hyperbolic groups. II. Makanin-Razborov diagrams, Geom. Topol., 9, 2319-2358 (electronic) (2005) · Zbl 1100.20032 · doi:10.2140/gt.2005.9.2319
[17] Guirardel, V., Actions de groupes sur des arbres réels et dynamique dans la frontière de l’outre-espace (1998)
[18] Guirardel, V., Approximations of stable actions on \(\mathbb{R} \)-trees, Comment. Math. Helv., 73, 1, 89-121 (1998) · Zbl 0979.20026 · doi:10.1007/s000140050047
[19] Guirardel, V., Limit groups and groups acting freely on \(\mathbb{R}^n\)-trees, Geom. Topol., 8, 1427-1470 (electronic) (2004) · Zbl 1114.20013 · doi:10.2140/gt.2004.8.1427
[20] Guirardel, V., Cœur et nombre d’intersection pour les actions de groupes sur les arbres, Ann. Sci. École Norm. Sup. (4), 38, 6, 847-888 (2005) · Zbl 1110.20019
[21] Gusmão, Paulo, Feuilletages mesurés et pseudogroupes d’isométries du cercle, J. Math. Sci. Univ. Tokyo, 7, 3, 487-508 (2000) · Zbl 0965.57027
[22] Imanishi, H., On codimension one foliations defined by closed one-forms with singularities, J. Math. Kyoto Univ., 19, 2, 285-291 (1979) · Zbl 0417.57010
[23] Kapovich, I.; Weidmann, R., Acylindrical accessibility for groups acting on \(\mathbb{R} \)-trees, Math. Z., 249, 4, 773-782 (2005) · Zbl 1080.20035 · doi:10.1007/s00209-004-0731-3
[24] Levitt, Gilbert, La dynamique des pseudogroupes de rotations, Invent. Math., 113, 3, 633-670 (1993) · Zbl 0791.58055 · doi:10.1007/BF01244321
[25] Levitt, Gilbert, Graphs of actions on \(\mathbb{R} \)-trees, Comment. Math. Helv., 69, 1, 28-38 (1994) · Zbl 0802.05044 · doi:10.1007/BF02564472
[26] Levitt, Gilbert; Paulin, Frédéric, Geometric group actions on trees, Amer. J. Math., 119, 1, 83-102 (1997) · Zbl 0878.20019 · doi:10.1353/ajm.1997.0003
[27] Morgan, John W., Ergodic theory and free actions of groups on \(\mathbb{R} \)-trees, Invent. Math., 94, 3, 605-622 (1988) · Zbl 0676.57001 · doi:10.1007/BF01394277
[28] Morgan, John W.; Shalen, Peter B., Valuations, trees, and degenerations of hyperbolic structures. I, Ann. of Math. (2), 120, 3, 401-476 (1984) · Zbl 0583.57005 · doi:10.2307/1971082
[29] Paulin, Frédéric, Topologie de Gromov équivariante, structures hyperboliques et arbres réels, Invent. Math., 94, 1, 53-80 (1988) · Zbl 0673.57034 · doi:10.1007/BF01394344
[30] Rips, E.; Sela, Z., Structure and rigidity in hyperbolic groups. I, Geom. Funct. Anal., 4, 3, 337-371 (1994) · Zbl 0818.20042 · doi:10.1007/BF01896245
[31] Scott, G. P., Finitely generated \(3\)-manifold groups are finitely presented, J. London Math. Soc. (2), 6, 437-440 (1973) · Zbl 0254.57003 · doi:10.1112/jlms/s2-6.3.437
[32] Sela, Z., Acylindrical accessibility for groups, Invent. Math., 129, 3, 527-565 (1997) · Zbl 0887.20017 · doi:10.1007/s002220050172
[33] Sela, Z., Endomorphisms of hyperbolic groups. I. The Hopf property, Topology, 38, 2, 301-321 (1999) · Zbl 0929.20033 · doi:10.1016/S0040-9383(98)00015-9
[34] Sela, Z., Diophantine geometry over groups. I. Makanin-Razborov diagrams, Publ. Math. Inst. Hautes Études Sci., 93, 31-105 (2001) · Zbl 1018.20034
[35] Sela, Z., Diophantine geometry over groups VII: The elementary theory of a hyperbolic group (2002) · Zbl 1060.20022
[36] Sela, Z., Diophantine geometry over groups. VI. The elementary theory of a free group, Geom. Funct. Anal., 16, 3, 707-730 (2006) · Zbl 1118.20035
[37] Serre, J-P., Arbres, amalgames, \({\rm{S}{L}}_2 (1977)\) · Zbl 0369.20013
[38] Shalen, Peter B., Group theory from a geometrical viewpoint (Trieste, 1990), 543-616 (1991) · Zbl 0843.20018
[39] Skora, Richard, Combination theorems for actions on trees (1989)
[40] Stallings, John R., Topology of finite graphs, Invent. Math., 71, 3, 551-565 (1983) · Zbl 0521.20013 · doi:10.1007/BF02095993
[41] Swarup, Gadde, Delzant’s variation on Scott complexity (2004)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.